Jiazhi Li *, D. Rochman, J. Herrero, H. Ferrouki, A. Vasiliev and A. Pautz

*Joint Master Program in Nuclear Engineering, EPFL - ETHZ, Switzerland
Reactor Physics and Systems Behaviour Laboratory, Paul Scherrer Institute, Switzerland

Towards Analysis of the Bowing Effect on Burnt Nuclear Fuel Compositions Using SERPENT

Assembly bow (PWR) and Channel bow (BWR) are widely observed

- Handling Difficulties
 - Incomplete control rod insertion
 - Axial offset anomaly

- Fuel / Reactor Simulations
 - Variation on moderation
 - Neutron spectrum
 - Isotopic concentrations
 - Fuel burn-up

- Computational Biases
 - Not take into account bowing effect
 - Biases between Post Irradiation Examination (PIE) simulations and measurements
Objectives

- Develop a methodology to investigate bowing effects
 - Use SERPENT Monte Carlo Continuous-Energy Depletion Code
 - Subdivide depletion zones for details
 - Compare the difference of isotopic concentrations

- Assess the capability of 3D modelling and SERPENT depletion calculation
 - 3D advanced and complicated modelling
 - Computational resource and time demanding
 - Neutron histories / Model size / Depletion zones
 - Study neutron source convergence

- Approach a preliminary simulation of bowing effects
 - On moderation
 - On isotopic concentrations
 - Against burn-up

- Quantify Numerical Bias for possible safety analyses
 - Optimize computational simulation models
Bow Mechanism

- Axial Compressive forces + Irradiation growth & Creep
 - Axial Load
 - Guide tube & Fuel pin

- S – shape and C – shape Assembly bow

Fig. 1 – Load sharing and fuel rod growth - Ref. [1]

Fig. 2 – S-shape and C-shape assembly bow examples - Ref. [2]

Methodology and Modelling

- Modelling 3D Fuel bow
 - Simplified into 3x3 pin lattice
 - Subdivide into 4320 depletion zones \([20 \times 3 \times 8 \times 9]\)
 - Max displacement is 1.5 mm \([5^{th}, 16^{th} \text{ layers}]\)
 - Two simulations (Nominal & Deformed)
 - \(\text{Rel. Diff} = \frac{C_D(i) - C_N(i)}{C_N(i)}, \ i = U^{235}, Pu^{239} \ldots\)

- Operational conditions

<table>
<thead>
<tr>
<th>Enrichment</th>
<th>Temperature</th>
<th>Power</th>
<th>Neutrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 w/o</td>
<td>900 K (Fuel)</td>
<td>0.025 KW/g</td>
<td>10,000 (per cycle)</td>
</tr>
<tr>
<td></td>
<td>600 K (Water)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Act. Cycles</th>
<th>Inact. Cycles</th>
<th>Burn-up step</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>25</td>
<td>0.5 MWd/kgU</td>
</tr>
</tbody>
</table>
Relative Diff. of Azimuthal U235 Concentration

Azimuthal U235 Concentration Relative Difference

U235 – 16th layer

- **Left side:**
 - Enhance moderation
 - Less U235 remains

- **Right Side:**
 - Reduce moderation
 - More U235 remains

- **Total Effect:**
 - Cancel out?
Relative Diff. of Axial U\textsubscript{235} Concentration

\(U^{235}\) Relative Difference vs Burn-up

\(U^{235}\) – Full Life (0 – 40 MWd/kgU)
- Positive: 4th, 5th, 15th, 16th
- Indication: More U235 remains in bow
Convergence and Asymmetry problems

- **Asymmetry**
 - Symmetric conditions leading to asymmetry results
 - Asymmetry oscillates with burn-up
 - Asymmetry variation amplitude larger than relative differences

- **Reasons**
 - **Neutron source not converged in the full-size scale model**
 - Axial power perturbation accumulates -> depends on burn-up increment
 - Power uncertainty is larger towards two ends (**1.5%**) than the center (**0.3%**)

- **Solutions**
 - Short length fuel model
 - More neutron histories -> limited by computational power
 - Alter S-shape to C-shape (change point symmetry to plane symmetry)
Solution I: Short Fuel Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>32cm (0.1 x real)</td>
</tr>
<tr>
<td>Max disp.</td>
<td>0.15mm</td>
</tr>
<tr>
<td>Neutron</td>
<td>10,000 (1x)</td>
</tr>
<tr>
<td>Active cycle</td>
<td>300 (1.2x)</td>
</tr>
<tr>
<td>Inact. cycle</td>
<td>300 (12x)</td>
</tr>
<tr>
<td>^{235}U Rel. Diff.</td>
<td>< 0.25%</td>
</tr>
<tr>
<td>^{239}Pu Rel. Diff.</td>
<td>> -1%</td>
</tr>
<tr>
<td>Burn-up length</td>
<td>40 MWd/kgU 82 steps</td>
</tr>
<tr>
<td>Depletion zones</td>
<td>180 (1/24x)</td>
</tr>
<tr>
<td>Calculation Time</td>
<td>9 hours (1/5x) 96 cores (8x)</td>
</tr>
</tbody>
</table>
Solution II: C-shape and Symmetric Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>320cm (real)</td>
</tr>
<tr>
<td>Max disp.</td>
<td>0.15mm</td>
</tr>
<tr>
<td>Neutron</td>
<td>100,000 (10x)</td>
</tr>
<tr>
<td>Active cycle</td>
<td>1000 (4x)</td>
</tr>
<tr>
<td>Inact. cycle</td>
<td>1000 (40x)</td>
</tr>
<tr>
<td>U^{235} Rel. Diff.</td>
<td>< 0.14%</td>
</tr>
<tr>
<td>Pu^{239} Rel. Diff.</td>
<td>> -0.27%</td>
</tr>
<tr>
<td>Burn-up length</td>
<td>30 MWd/kgU</td>
</tr>
<tr>
<td>62 steps</td>
<td></td>
</tr>
<tr>
<td>Depletion zones</td>
<td>60 (1/72x)</td>
</tr>
<tr>
<td>Calculation Time</td>
<td>50 hours (1x)</td>
</tr>
<tr>
<td></td>
<td>384 cores (32x)</td>
</tr>
</tbody>
</table>

U^{235} Relative Difference vs Burn-up

Pu^{239} Relative Difference vs Burn-up
Uncertainty of Results

- **Statistical Uncertainties**
 - Each calculated tally is provided with a statistical uncertainty
 - Statistical uncertainty of each transport step is not propagated to burn-up step
 - Thus, no statistical uncertainty of isotopic inventories
 - Possible Solution: Perform independent simulations with different random seeds

- **Systematic Error**
 - Fluxes and reaction rates are considered stationary in each step
 - Uniform isotopic concentration in each depletion zone
 - Non-linear Bateman Equation
 - $N_R = g(\phi_R) \neq E(g(\bar{\phi}))$
 - N_R : Real isotopic concentration
 - $g(\phi_R)$: Bateman Eq. solving with real flux
 - $E(g(\bar{\phi}))$: Expectation of Bateman Eq. solving with Estimated flux
Conclusion

- A methodology to investigate bowing effects has been achieved

- A few preliminary simulations has been performed to illustrate
 - quantifying numerical bias
 - bowing effects on isotopic concentrations

- Convergence problems have been thoroughly investigated and solved
 - A few methods are suggested to converge
 - More Neutron, Smaller Size, Less depletion zones, C-shape, Symmetry

- Statistical uncertainty of the results are not available but analyses are present

- Future work ...
Future Work

- Progressive C-shape deformation with burn-up + more neutron histories
- Subdivisions on the C-shape model to investigate azimuthal isotopic concentrations
- Assembly bow

1/4 symmetry
Wir schaffen Wissen – heute für morgen

Thanks for your attention!

Questions?