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The radiation effects community embraces the 
importance of quantifying uncertainty in model 
predictions and the importance of propagating this 
uncertainty into the integral metrics used to validate 
models, but they are not always aware of the importance 
of addressing the energy- and reaction-dependent 
correlations in the underlying uncertainty contributors. 
This paper presents a rigorous high-fidelity approach that 
addresses the correlation in the underlying uncertainty 
components and quantifies the role of both energy and 
reaction-dependent correlations in a sample application 
that addresses the damage metrics relevant to silicon 
semiconductors. 

 
I. INTRODUCTION 

The radiation effects community needs a rigorous 
high-fidelity quantification of the uncertainty in various 
damage metrics that are used in the assessment of the 
radiation response of materials. As a sample application 
of an approach that should be used, this paper addresses a 
set of nine damage metrics that are relevant to silicon 
semiconductors. These metrics are shown in Table I.  

TABLE I. Damage metrics relevant to silicon 
semiconductors. 

#  Metric  Units  
1 Total dose rad(Si) 
2  Displacement dose rad(Si) 
3 Ionizing dose rad(Si) 
4 1-MeV(Si)-Equivalent 

Fluence 
1-MeV(Si)-
Eqv./cm2 

5 NRT damage energy eV-b 
6 Frenkel pair density FP/μ 
7 Track density Tracks/μ 
8 Minority carrier lifetime μs 
9 Cumulative LET 

distribution 
MeV-cm2/mg 

 

The following sections address: a) the definition of the 
calculated radiation damage metrics; b) the sources of 
uncertainty in the calculated metrics; and c) a rigorous 

quantification of the neutron energy-dependent 
uncertainty for these damage metrics in the form of a 
covariance matrices. Complete covariance matrices are 
given for damage metrics #1, 2, 3, 5, and 7 shown in 
Table I. 

 
II. DEFINITION OF DAMAGE METRICS 

The most fundamental calculated damage metric is 
the total dose delivered to the sensitive volume of a 
silicon device. In order to eliminate the sensitivity of this 
calculated metric to small feature details in the silicon 
device, for example the presence of metal vias, the 
assumption is made that charged particle (electron) 
equilibrium exists. Given this condition, the neutron 
energy dependence of the total dose is identical to that for 
the microscopic kerma factor. In order to examine the 
uncertainty contributors to this damage metric, it is 
desirable to establish a general framework that can be 
used to describe the metrics. 

Given an energy-dependent microscopic response 
function, ( )Eℜ , and an incident neutron fluence, ( )Eφ , 
the macroscopic observable/metric, D , is given by the 
expression seen in Equation 1, where   is a unit 
conversion that varies with the selected damage metric.  

0

( ) ( )D E E dEφ
∞

= ℜ∫      (1) 

For silicon, when the response function is the microscopic 
kerma factor as computed within the NJOY-2012 code1 
and reported as the MT=301 quantity in units of eV-b, the 
unit conversion factor is 3.435x10-13 [rad(Si)-cm2]/[MeV-
mb] • 1.x10-3 [MeV-mb]/[eV-b].  

For a neutron irradiation, the microscopic neutron 
kerma factor, i.e. ( )( ) kerma EE κℜ = , which is the 
energy-dependent response used to determine the 
dose/kerma delivered in the radiation exposure, is 
computed through the expression shown in Eq. 2.  
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In this expression the summation is over all reaction 
channels i and all particles, ji, emitted in that reaction, E is 
the energy for the incident neutron, , ( )

ii j Eσ  is the cross 

section for producing particle ji, through reaction i, , iR jT  
is the associated recoil particle/ion energy, the integral is 
over the recoil particle energy and the recoil emission 
angle, and ,( , , )

iR jf E Tµ  is the energy/angle distribution 
for the outgoing recoil particle. Conservation of energy 
and momentum often produce a strong correlation 
between the outgoing recoil atom energy and its emission 
angle, which is captured in this term. 

The second damage metric in Table I, the 
microscopic displacement kerma factor is given by: 

, ,0
,

( ) ( )n
type displ i j R ji i

i ji

E E dTκ σ
∞

= ∑ ∫   

( )1
, , ,1

( , , )
i i i

ion type
R j R j R jdamd f E T T T Tµ µ

−
⋅ ⋅ ⋅∫  (3) 

where ( )ion type
dam RT T  is the fractional recoil ion damage 

partition function indicated by the “type”. Typical “types” 
of the damage partition function used for silicon include: 
a) the Robinson fit2 to the Lindhard, Scharff, and Schiott 
(LSS) energy partition3; b) the Akkermann analytic fit4 
based on use of the Ziegler, Biersack, and Littmark (ZBL) 
potential5 for the elastic Coulomb scattering and use of a 
combination of a local (impact parameter dependent) 
model and a non-local model for the inelastic ion-atom 
scattering. 

The third damage metric, the microscopic ionizing 
kerma factor is given by: 

( ) ( ) ( )n n n
type ion kerma type displE E Eκ κ κ= −   (4) 

The fourth damage metric, the ASTM 1-MeV(Si)-
Equivalent fluence6,7, is defined to be equal to the 
displacement kerma divided by a reference displacement 
kerma value representative of the general behavior in the 
1-MeV region as determined by a fit to an analytic 
expression having the form8: 

( ) ( )1
Bref E

Si E A E eκ −= ⋅ −    (5) 

The 1-MeV(Si)-Equivalent response function is then 
given by: 

( )1

( )
( ) 1

n
n type displ

MeV ref
Si

E
E MeV

κ
κ κ− =

−
  (6) 

The fifth damage metric, the NRT-based damage 
energy, is defined in a manner similar to that for the 
displacement kerma in Eq. 3, but also has a special 
treatment in the region near the displacement threshold 
energy. The displacement threshold energy, Ed, is the 
minimum energy imparted to the primary knock-on atom 
(PKA) as a result of a neutron-induced reaction that will 
result in a displacement of the resulting lattice atom 
(identical to the target lattice atom in the case of an elastic 
or inelastic event). The energy required to displace a 
lattice atom has an angle dependence due to the 
crystalline structure and, because small displacements can 
rapidly recombine, there is a large variation in the 
experimental determination of Ed. There is also a large 
variation in the calculated values9 for Ed. Both the 
experimental and calculated values for Ed in crystalline 
silicon tend to be in the range 10 , 30eV eV∈ . The 
Norgett-Robinson-Torrens (NRT) threshold treatment2 
defines the number of Frenkel pairs near the threshold 
region as: 

( ),, ( )
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d d damv E T T =   
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0
0
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where the damage energy for the ion is given by: 

( ), ,i i

ion ion Robinson
dam dam R j R jT T T T= ⋅   

and ( ), i

ion Robinson
dam R jT T is the Robinson fit to the LSS 

fractional partition function. A reference damage energy 
for an NRT-Frenkel pair can be defined as: 

(2 ) /NRT
dEα β=      (8) 

where β is an atomic scattering correction and is taken to 
be 0.8. This reference energy can then be used to relate a 
damage energy to a number of displaced atoms.  

When a NRT-threshold treatment is applied to the 
displacement kerma, the NRT-based damage energy is 
defined as: 

1
, , ,0 1

,
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The Frenkel pair density, the sixth metric in Table I, 
has a model-dependence based on the displacement 
threshold treatment. For the NRT Frenkel pair density, the 
damage metric is given as:  

1
, , ,0 1

,
( ) ( ) ( , , )

n
NRT E FP i j R j R ji i id i ji

E E dT d f E Tκ σ µ µ
∞

= −
= ⋅ ⋅∑ ∫ ∫   

( ) ( ), ,, ( )
NRT ion ion Robinson

d d dam j dam R j R ji i i
v E T T T T T⋅ ⋅  (11) 

Since every neutron-induced interaction produces a 
primary recoil atom, the track density, the seventh metric 
in Table I, is a damage metric that is directly proportional 
to the total cross section. 

The minority carrier lifetime, the 8th metric in Table 
I, is a metric based upon the Frenkel pair generation but 
also applies a defect efficiency function based on the 
recombination cross section for the minority carriers with 
the neutron energy-dependent defect population. There is 
a wide range of defects that can result from displacements 
in silicon, e.g. VO, V2

-, V2
=, VP. The formation rate for 

these defects is affected by the initial density of Frenkel 
pairs and the presence of dopants and contaminant atoms 
near the defect cluster.  

The LET distribution, the 9th metric in Table I, is not 
a scalar damage metric, but it is described by the 
cumulative density function (cdf) for the recoil atom 
spectrum weighted by the ion energy-dependent stopping 
power for the initial recoil atoms. The silicon stopping 
power is shown in Figure 1. The ion stopping power 
shows a peak and then falls off with increasing ion 
energy. Since this LET damage metric is intended to 
capture the maximum charge generation within the 
sensitive volume of the silicon device, the proper 
weighting function should be the maximum stopping 
value for any ion energy equal to or less than that for the 
initial neutron-induced recoil ion energy. As seen in the 
figure, the maximum of the silicon stopping power occurs 
at about 1 MeV per nucleon, so, for fission energy 
neutrons, the maximum stopping power corresponds to 
the initial recoil energy. When neutron-induced reactions 
result in a heavy primary recoil particle and an alpha 
particle, the LET from the alpha particle should be added 
to that from the PKA (as well as being treated as a 
separate particle) in order to represent the maximum 

charge deposition in the device sensitive volume. Figure 2 
shows the probability distribution function (pdf) for the 
LET distribution from a 14-MeV neutron. The cumulative 
LET distribution is an integral over the pdf and represents 
the cumulative probability for an LET being generated 
that exceeds a given value. Figure 3 shows the cdf for a 
14-MeV neutron on silicon.  

 

III. TREATMENT OF THE UNCERTAINTY 
CONTRIBUTORS 

The determination of the uncertainty in the calculated 
damage energy requires that we look at the energy-
dependent uncertainty in the various quantities in 
Equation 2. This energy-dependent uncertainty is best 
captured as a covariance function, which is equivalent to 
providing an energy-dependent standard deviation and a 
correlation matrix. The major components within the 
integrand of Eq. 2 are: 1) the reaction cross section and 
resulting recoil ion spectra; 2) the partition function that 
divides the recoil energy into a damage component, e.g. 
an ionizing component or a non-ionizing component; and 
3) a threshold treatment. The following sections capture 
some of the primary observations on how to characterize 
the uncertainty due to the treatment of each of these three 
separate quantities. Since these components are 
uncorrelated, the uncertainty in the damage energy can be 
expressed as the sum of the component covariance 
matrices. 

 
Fig. 1. Stopping power in silicon lattice 
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Fig. 2. pdf for silicon LET from 14-MeV neutrons 

 
 

Fig. 3. cdf for Silicon LET from 14-MeV Neutron 
 
III.A. Nuclear Data 

The investigation of uncertainties in the damage 
energy metric starts with a consideration of the 
uncertainty due to the underlying nuclear data. The 
baseline damage energy response function is calculated 
for a sharp threshold Kinchin-Pease model10 that uses the 
Robinson fit to the LSS damage partition function2,3 with 
the NJOY-2012 code1. NJOY cannot only produce the 
total damage energy, but it can separately output the 
various components of the damage energy, i.e. the elastic, 
inelastic, and disappearance damage energy components. 
The residual damage component, termed as “other” here, 
is computed by subtracting the components from the total 
damage energy. For the 28Si isotope, this “other” damage 
energy channel includes contributions from the (n,2n), 
(n,nα), (n,2nα), (n,np) and (n,n2α) channels. Figures 4 and 
5 show a logarithmic and linear representation of the 
energy-dependent fractional contribution from each of 
these channels.  

 
 

Fig. 4. Logarithmic energy view of the relative 
contribution of the 28Si sharp threshold damage energy 
from reaction channels. 
 

 
 

Fig. 5. Linear energy perspective of the relative 
contribution of high energy portion of the 28Si sharp 
threshold damage energy from reaction channels. 
 

The damage energy depends not just on the cross 
section, but also on the resulting recoil ion spectra. These 
recoil spectra are quite complex, varying with the incident 
neutron energy and the reaction channel. Figure 6 shows 
some representative recoil energy spectra for a 15-MeV 
neutron on 28Si. Figure 7 shows a representative 
comparison of the agreement of the recoil spectrum 
between different evaluated nuclear data files for the 
(n,nα) reaction with an incident neutron energy of 20 
MeV. From the broad study, the agreement is seen to be 
very good in the elastic channel, but there can be 
significant differences for some of the disappearance 
channels for neutron energies near the reaction threshold 
energy. 

 
 

Fig. 6. Reaction-dependent recoil spectra for 15-MeV 
neutron 
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Fig. 7. Comparison of ENDF-format library dependence 
of the (n,nα) recoil spectra 
 

Using a set of 300 random cross section libraries 
generated with the TALYS system of codes and made 
available as part of the TENDL-2015 release11,12 a Total 
Monte Carlo (TMC) approach13,14 was used to treat the 
nonlinear propagation of uncertainty through the equation 
that defines the damage energy. An 89-group structure 
was used in the NJOY-2012 code to generate a 300-
element set of damage energies and then to compute the 
covariance matrix for the nuclear data contribution to the 
uncertainty for the various response functions.  

Figure 8 shows the energy-dependence of the 
standard deviation for the various damage energy 
components. One immediately notes that, while the total 
damage energy is the sum of the various component 
damage energies, at high energy the uncertainty in the 
total damage energy is significantly smaller than the 
uncertainty for any of the individual components. This 
indicates that there is a strong correlation between the 
various damage energy components, a correlation that 
cannot be neglected in characterizing the uncertainty in 
the total damage energy. This study clearly shows that a 
sample-based, i.e. Monte Carlo, nonlinear propagation of 
uncertainty that fully incorporates the underlying physics-
based correlations between the different reaction 
channels, like that provided by the TMC approach, is 
required for this uncertainty analysis.  

Figure 9 shows the resulting standard deviations for 
the various damage metrics due to the nuclear data 
uncertainty as represented in this 300 sample TMC 
analysis. Figures 10 and 11 show representative 
correlations matrices for the ionizing kerma and the 
displacement kerma. 

 
 

Fig. 8. Standard deviation for the 28Si sharp threshold 
damage energy from the reaction channels. 
 

 
 

Fig. 9. Uncertainty due to nuclear data 
 

 
 

Fig. 10. 28Si ionizing kerma correlation matrix due to 
nuclear data 
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Fig. 11. 28Si displacement kerma correlation matrix due to 
nuclear data 
 
III.B. Partition Function 

The second major source of uncertainty in Eq. 2 is 
from the damage partition function. This is the function 
ionTdam(Tr) in Eq. 2 that, for the damage energy metric, 
converts the recoil ion energy, Tr, into a non-ionizing 
(displacement) component that can be correlated with the 
production of Frenkel pairs. The most widely used energy 
partition model is the Robinson fit to the Lindhard, 
Scharff, and Schiott (LSS) energy partition3 that uses a 
Thomas-Fermi screening function over the Coulomb 
potential to model the elastic interactions and a non-local 
free uniform electron gas model for the inelastic 
electronic scattering. Robinson and Torrens fit2 the LSS 
energy partition with an analytic representation based 
upon the atomic mass, A, and atomic number, Z, for the 
incident ion and the lattice ion. The main source of 
uncertainty in the partition function comes from 
uncertainty in the ion interaction potentials. 

In order to more completely explore this sensitivity, 
the binary collision approximation (BCA) code, 
MARLOWE15,16, was used to calculate the ion energy-
dependent partition function for a range of ion interaction 
potentials that have been used by the ion modeling 
community. There are two types of potentials: those that 
describe the electronic interaction and those that describe 
the ion interaction with the lattice atoms. The former is 
called the electronic potential and is typically described 
by the LSS or ZBL potential. The latter is called the 
nuclear potential - even though it has nothing to do with 
nuclear interactions - and the MARLOWE BCA code has 
implemented models with the Moliere, exponential, and 
Lenz-Jensen potential. Figure 12 shows the set of 
partition functions that arose from these BCA 
calculations.  

 
 
Fig. 12. Silicon displacement kerma fractions due to the 
different interaction potentials 

 

After generating this range of representative partition 
functions, investigations showed that the cumulative 
Weibull distribution provided an excellent functional fit 
to the form of the fractional partition functions. The 
Weibull form had a high-quality fit to each of the 
individual BCA-based partition functions as well as for 
the composite set of data. The fits enabled the extraction 
of mean values and standard deviation for the 5-parameter 
Weibull functional form. Two constraints were used to 
capture observed correlations between the Weibull 
distribution parameters resulting in a 3-parameter fit. A 
Monte Carlo sampling of the fitting parameters was used 
to generate the covariance matrix for the ion damage 
energy partition function. This covariance matrix is 
represented by the standard deviation and correlation 
matrix shown in Figures 13 and 14.  

 
 
Fig. 13. Standard deviation for silicon partition function 
based on a Weibull distribution (5 parameter 
representation with 2 constraints) 
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When a Total Monte Carlo process is used with a set 
of 1000 NJOY calculations to propagate the uncertainty in 
the recoil ion partition function into the uncertainty 
contribution in the neutron energy-dependent response 
functions a covariance matrix is generated. Figure 15 
shows the resulting neutron energy-dependent standard 
deviation in the ionizing and displacement kerma due to 
the uncertainty in the partition function. Figure 16 shows 
the correlation matrix for uncertainty due to the partition 
function in the displacement kerma. As expected from the 
physics of the ion energy loss and the broad energy range 
for recoil atoms, this correlation matrix shows a strong 
positive correlation for much of the neutron energy phase 
space.  
 

 
 
Fig. 14. Correlation matrix for silicon partition function 
based on a Weibull distribution (5 parameter 
representation with 2 constraints) 
 

 
 
Fig. 15. 28Si Uncertainty due to interaction potentials 
 

 

 
 
Fig. 16. 28Si displacement kerma correlation matrix due to 
interaction potentials 

 

III.C. Displacement Threshold Energy and Treatment 
The next contribution to the uncertainty to consider is 

that due to the treatment of the displacement threshold 
region. While the displacement kerma is basically the 
damage energy with a zero eV lower integration bound 
and a zero displacement threshold energy, the damage 
energy for realistic cases can be strongly affected by the 
choice of the displacement threshold energy and by the 
formalism for treating the effective damage near the 
threshold where actual displaced lattice atoms can be 
generated. The nominal/recommended displacement 
threshold energy in silicon is 20.5 eV17. However, there is 
significant uncertainty in the value for the displacement 
threshold energy. For silicon, the range found in both 
experimental investigation and in model-based calculation 
is between 10 eV and 30 eV9,17.  

Figure 17 shows that the difference between the 
various displacement model metrics is negligible except 
in a narrow neutron energy range between 100 eV and 1 
keV. However, the effect can be large in this region, 
±50%. The difference between these damage energy 
metrics based on the displacement model in this neutron 
energy region is due to the fact that elastic scattering is 
the dominant reaction in this region and conservation of 
momentum and energy for each elastic interaction results 
in a maximum energy transfer to a lattice atom given by:  

( )2
4

1
n

recoil
A EE

A
⋅ ⋅

=
+

 (7) 

where En is the energy of the incident neutron and A is the 
atomic weight of the lattice atom. The case where the 
lattice recoil energy in silicon from elastic scattering is 
equal to a displacement threshold energy of 20.5 eV 
corresponds to an incident neutron energy of ~153 eV. 
For lower neutron energies, the deviations are very small 
since the displacement kerma is dominated by the 
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contributions from the (n,γ) reaction, which kinematically 
permits a larger recoil energy for the residual ion, so that 
the lower integration bound for the displacement 
threshold energy no longer plays an important role in the 
damage energy calculation.  

Figure 18 shows the variation in the threshold-based 
damage energy, i.e. with Ed as the lower integration 
bound that can result from this range of possible values 
for the displacement threshold energy in silicon. This 
figure shows the percent difference relative to the 
nominal/recommended displacement threshold energy of 
20.5 eV. The maximum deviation seen in Figure 18 
between damage energies with different Ed values 
[relative to Ed = 20.5 eV] is seen to be about ±80% - but 
this is only significant over a small energy region.  

 
 

Fig. 17. Effect of varying the displacement threshold 
energy 
 

 
 

Fig. 18. Effect of different treatments of the threshold on 
the damage energy 
 

In our work we have quantified the change in the 
damage energy when the displacement threshold energy is 
varied using a Total Monte Carlo approach to capture the 
nonlinear change in the damage energy. The energy-

dependent standard deviation in the magnitude of the 
response is shown in Figure 19. The energy-dependent 
correlation matrix is shown in Figure 20. 
 

 
 

Fig. 19. 28Si NRT-based damage energy uncertainty due 
to the threshold displacement treatment 

 

 
 

Fig. 20. 28Si NRT-based damage energy correlation 
matrix due to the displacement treatment 

 

III.D. Model Defect 
The above sections dealt with all of the obvious 

contributions to the uncertainty in the damage energy. 
The purpose of “model defect” category is to address any 
uncertainty aspects that were not captured in the normal 
accessible parameter variation, i.e. a model attribute that 
did not have a user-accessible parameterized form. While 
we may not be able to statistically vary the “model 
defect” uncertainty contributions in order to characterize 
them, we should be able to use “subject matter expertise” 
to recognize the uncertainty contributions and propose, 
based on expert judgement, an energy-dependent term 
that provides for a conservative treatment of this potential 
uncertainty contribution. 
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The treatment of “model defect” varies with each 
response metric and is an area of active investigation and 
refinement. Contributions considered so far include: 

1) Potential uncertainty in the underlying nuclear 
reaction models not captured with accessible 
nuclear reaction model parameter variation. An 
example is the expected variation in recoil 
energy spectra from some of the non-threshold 
reaction channels. 

2) The may be differences in the energy-
dependence of the calculated damage metric and 
the phenomena with which it is intended to be 
correlated. In particular, for silicon displacement 
damage, there is some experimental data that 
suggests that low energy neutron damage is 
much less than predicted with the calculated 
damage energy. This may be related to the fact 
that this damage metric was developed to 
correlate with the formation of primary Frenkel 
pair, whereas the actual change in minority 
carrier lifetime in silicon devices is caused by the 
more complex defect, i.e. divacancies and 
vacancy-phosphorous defects rather than the 
vacancy-oxygen defects that predominate from 
low damage energy induced point defects. The 
modelling of the efficiency with which Frenkel 
pair defects migrate and form complex defect 
with impurities and dopants is not captured in the 
currently modelled physics. 

3) Some semiconductors, e.g. GaAs, indicate a 
thermal spike phenomenon at higher neutron 
energies18, this thermal spike effect may exist in 
silicon at neutron energies above 20 MeV. An 
arc-dpa formalism9 has a functional behaviour 
that could capture the recoil energy dependence 
of this effect if experimental evidence is 
gathered.  

 
IV. RESULTS 

As a sample application of the importance of the 
various uncertainty contributions for silicon damage 
metrics, consider the spectrum-averaged damage metric, 
as defined by Eq. 1, in the 252Cf spontaneous fission 
benchmark neutron field. Table II shows the uncertainty 
contributions to the various metrics from the nuclear data 
(Nuc. Data.), the interaction potential (Int. Pot.), and the 
threshold treatment (Thresh.). Uncertainties are given in 
column 4 for a proper treatment using the correlation 
matrix as well as, in column 3, for an assumed fully 
correlated uncertainty. For the NRT-based damage 
energy, the proper treatment of the uncertainty shows that 
the uncertainty contribution from the interaction potential 
is over three times that from the nuclear data. For this 
same metric, there is a factor of two difference between 

the nuclear data uncertainty when using a proper 
covariance matrix as opposed to the fully correlated 
assumption. However, for the interaction potential 
uncertainty, the fully correlated and properly uncertainties 
are nearly identical. This is because, as seen in Figure 16, 
the uncertainties due to the interaction potential are nearly 
fully correlated.  

TABLE II. Contributions from uncertainty components 
for the silicon damage metrics in the 252Cf(sf) field. 

Metric Unc. 
Cont. 

Uncertainty 
Fully 

Correlated. 
Proper 

Correlation 

Total Kerma Nuc. 
Data 6.283% 3.817% 

Displ. 
Kerma 

Nuc. 
Data 4.815% 2.652% 

Int. Pot. 8.964% 8.679% 

Ionizing 
Kerma 

Nuc. 
Data 7.299% 4.946% 

Int. Pot. 4.640% 4.487% 

NRT Dam. 
Energy 

Nuc. 
Data 4.815% 2.653%% 

Int. Pot. 8.964% 8.679% 
Thresh. 0.0017% 0.0009% 

 

Table III shows the result of combining the various 
uncertainty contributions while distinguishing the fully 
and properly correlated cases shown in Table II. A proper 
treatment of the correlation is seen to make a factor of 
two difference for total kerma metric, but it does not have 
a large effect for the displacement or ionizing kerma 
metrics. This is attributed to the large uncertainty 
contribution from the ionization potential term and the 
fact that it is strongly energy correlated. Work is 
underway to apply the 1-MeV(Si) constraint shown in Eq. 
5 to derive a proper covariance matrix for the 1-MeV 
response function. Since this metric is dominated by the 
fast neutron response, the constraint should remove most 
of the systematic uncertainty due to the interaction 
potential. This will result in the dominant uncertainty 
coming from the consideration of the nuclear data and, 
based on the uncertainty components seen in Table II, the 
proper correlation treatment will for the 1-MeV(Si) metric 
will result is a factor of three times smaller uncertainty 
than through use of the fully correlated model.  

 
V. CONCLUSIONS 

The above discussion has captured the recent work 
performed to provide a better understanding of the 
uncertainties in radiation damage metrics. The work 
reported here focused on an examination of primary 
radiation damage in silicon semiconductor materials that 
affects the change in minority carrier lifetime, and, in 
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particular, on properly expressing the relevant damage 
metric and then on quantifying the energy-dependent 
uncertainty of this metric in the form of a covariance 
matrix.  

 

TABLE III. Importance of treating correlation in the 
silicon damage metrics in 252Cf(sf) field. 

Metric Neutron 
Spectrum Response Function 

  Fully 
Correlated 

Proper 
Correlation 

Total Kerma 0.374% 6.28% 3.817% 
Displ. 
Kerma 0.162% 10.20% 9.106% 

Ionizing 
Kerma 0.530% 8.82% 6.911% 

NRT Dam. 
Energy 0.162% 9.95% 9.106% 
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