

D. Rochman, P. Mala, H. Ferroukhi, A. Vasiliev, M. Seidl, D. Janin and J. Li

Bowing effects on power and burn-up distributions for simplified full PWR and BWR cores

M&C 2017 conference, Jeju, Korea, April 16-20, 2017

- Introduction & Short description of the bowing effect
- CASMO Models for PWR and BWR
- Results: Number densities
- Results: Assembly power
- Possible improvements
- Conclusions

- Bowing effect: deformation of the fuel assemblies observed in PWR and BWR,
- Impact on the motion of control rods,
- Impact on isotopic content, power map...
- And impact on the safe operation of the reactor

- Full core simulation with CASMO-5 (MxN model), up to 30 MWd/kgU
- Assemblies are modelled with X and Y displacements
 - "LDX/LDY" cards for the PWR
 - "GAP" card for the BWR
- One type of fresh fuel (UO₂)

Assembly						
Geometry	17×17	Fuel pin R	0.4095			
Fuel type	UO_2	Air gap R	0.4177			
Rods	289	Clad R	0.475			
Pitch (cm)	1.254	Clad	Zircaloy			
Water channels	25	Clad ρ (g/cm ³)	6.56			
Enrichment ²³⁵ U	4.11 %	Inner water R	0.57			
Fuel ρ (g/cm ³)	10.07	Outer water R	0.615			
Power dens. (W/gU)	25					
Core						
Assemblies	193	Geometry	17×17			
Fuel T	900 K	Moderator T	600 K			

Accombly

TABLE I. Main characteristics of the PWR assemblies and core considered in this work. "R" means *radius*, given in cm.

Bundle				
Geometry	10×10	Fuel pin R	0.442	
Fuel type	UO_2	Air gap R	0.452	
Rods	91	Clad R	0.502	
Pitch (cm)	1.295	Clad	Zircaloy	
Water Channel	9	Clad ρ (g/cm ³)	6.55	
Wall dist. (cm)	13.4	Box Wall tick.	25 mm	
Wide Water gap	2 cm	Narrow Water gap	1 cm	
Fuel ρ (g/cm ³)	10.31	Power dens. (W/gU)	25	
Core				
Assemblies	164	Geometry	16×16	
Fuel T	900 K	Moderator T	559 K	
Void coolant	41 %	Pressure	70 bar	

TABLE II. Main characteristics of the BWR bundles and core considered in this work. "R" means *radius*, given in cm.

- The bowing map is from a typical assembly bow in PWR EDF 1300 MW(e) reactors,
- Assumed constant for the whole cycle,
- Same map applied to the PWR and BWR,

• The results for presented in the form of

$$\Delta = (C^D - C^N)/C^N,$$

With C^D: quantity of interest for the deformed core, And C^{N} : quantity of interest for the nominal core,

- In general, the following observations are true:
- gap increase \iff higher thermal neutron population
- gap increase \iff higher local power
- gap increase $\iff \Delta(^{235}U) < 0$ ← Higher consumption of ²³⁵U
- gap increase $\iff \Delta(^{148}Nd) > 0$

- Higher fission products production
- gap increase $\iff \Delta(^{239}Pu) < 0$ \iff Higher consumption of ^{239}Pu
- gap increase $\iff \Delta(^{244}Cm) > 0$ \leftarrow Higher heavy actinide production

Results: isotopic content for ¹⁴⁸Nd and ²³⁵U

BWR

PWR

CENTIFIES

-

BWR

PWR

Results: Assembly power

BWR

PWR

 Stronger effect for the PWR (3 times higher compared to the BWR), following the ¹⁴⁸Nd map.

- Same constant bowing map implemented for PWR and BWR cores
- CASMO-5 simulation for the full cores up to 30 MWd/kgU:
 - Local pin number densities:

– Local pin average power:

effect stronger for the PWR effect stronger for the PWR

Extreme Average PWR BWR **PWR BWR** Pin¹⁴⁸Nd 5.1 2.5 0.0 0.0 Pin ²³⁵U 2.0 2.9 0.0 0.0 Pin²³⁹Pu 1.8 1.4 0.0 -0.1 Pin²⁴⁴Cm 21 8.0 -0.2 -0.3 Pin Power 5.5 1.8 0.0 0.0 TABLE III. Absolute values of Δ in % for the extreme varia-

tions of number densities, and average Δ , at 15 MWd/kgU.

- These results depend on the selected assumption (bowing map, fuel...)
- Many improvements are possible:
 - UO₂/MOX fuel,
 - Variable bowing amplitude in cycle and for more than 1 cycle,
 - Realistic BWR bowing map