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This paper presents a novel approach to the evaluation of nuclear data (ND), combining exper-
imental data for thermal cross sections with resonance parameters and nuclear reaction modeling.
The method involves sampling of various uncertain parameters, in particular uncertain components
in experimental setups, and provides extensive covariance information, including consistent cross-
channel correlations over the whole energy spectrum. The method is developed for, and applied to,
59Ni, but may be used as a whole, or in part, for other nuclides.

59Ni is particularly interesting since a substantial amount of 59Ni is produced in thermal nuclear
reactors by neutron capture in 58Ni and since it has a non-threshold (n,α) cross section. Therefore,
59Ni gives a very important contribution to the helium production in stainless steel in a thermal
reactor. However, current evaluated ND libraries contain old information for 59Ni, without any
uncertainty information.

The work includes a study of thermal cross section experiments and a novel combination of this
experimental information, giving the full multivariate distribution of the thermal cross sections. In
particular, the thermal (n,α) cross section is found to be 12.7 ± .7 b. This is consistent with, but
yet different from, current established values.

Further, the distribution of thermal cross sections is combined with reported resonance parame-
ters, and with TENDL-2015 data, to provide full random ENDF files; all of this is done in a novel
way, keeping uncertainties and correlations in mind. The random files are also condensed into one
single ENDF file with covariance information, which is now part of a beta version of JEFF 3.3.

Finally, the random ENDF files have been processed and used in an MCNP model to study the
helium production in stainless steel. The increase in the (n,α) rate due to 59Ni compared to fresh
stainless steel is found to be a factor of 5.2 at a certain time in the reactor vessel, with a relative
uncertainty due to the 59Ni data of 5.4%.

I. INTRODUCTION

A. Background

In many stainless steels, nickel makes up as much as
10% of the content, but 59Ni does not occur in nature,
as it is radioactive with a half-life of 76 000 years [1].
However, 58Ni constitutes 68% of natural nickel, and this
nuclide has a high thermal (n,γ) cross section, compared
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to the other major constituents of stainless steel, i.e., iron
and chromium [2]. As a result, a substantial fraction of
the neutrons passing through stainless steel components
in a thermal nuclear reactor will be captured in 58Ni nu-
clides. In this way, 59Ni is produced, and the 59Ni content
can become more than 4% of the initial 58Ni content be-
fore it starts to decrease [3].

In turn, 59Ni has a rare property which makes it impor-
tant. Namely, it has extraordinarily high thermal (n,α)
and (n,p) cross sections, i.e., cross sections for neutron
capture followed by the emission of an α-particle or a
proton, respectively (12.3 ± 0.6 b and 2.0 ± 0.5 b, re-
spectively [2]). This results in the production of helium
and hydrogen gas in the steel even in thermal spectra,
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which leads to, e.g., embrittlement of the material. The
reactions also have high Q-values, such that substantial
amounts of energy are released in the material, also lead-
ing to material damage. Thus, the two-step reactions
58Ni(n,γ)59Ni(n,α) and 58Ni(n,γ)59Ni(n,p) make 59Ni im-
portant in thermal reactors [3].

In the major evaluated nuclear data libraries, 59Ni does
not have any covariance data. In ENDF/B-VII.1 [4], the
59Ni file is copied from JEFF 3.2 [5], which in turn is
copied from previous JEFF/JEF versions since JEF 2.2:
an evaluation from ECN, Petten from 1990 [6]. The pri-
mary goals of this work are to provide a modern evalua-
tion for 59Ni, containing covariances, and to present novel
ideas in nuclear data evaluation.

For the considered nuclide, there are two main sources
of information based on experiments: several experiments
on thermal cross sections, and a set of resonance parame-
ters which is poorly documented (no raw data nor partial
cross sections are available, to the knowledge of the au-
thors, and the uncertainty information is limited). In this
work, a methodology trying to make the best use of these
two sources is developed, and which also takes knowledge
from other nuclides into account, via physical models. At
the heart of the methodology, there is random sampling of
various uncertain parameters. The sampling of reaction
model parameters and resonance parameters constitute
similarities to Total Monte Carlo [7, 8], but experimental
error components are also sampled, and the combination
of the different sources of information is done in a novel
way.

Some special care has to be taken because the most fre-
quently used resonance parameter formats in the ENDF
format [9] do not allow for thermal and resonance range
(n,α) and (n,p) cross sections described by resonance pa-
rameters. The relatively new resonance format “LRF=7”
allows for these channels, but it assumes more detailed
knowledge of the available experiments.

Even if the methodology is developed to meet the situ-
ation of 59Ni, it may very well be used for other nuclides
with non-threshold reactions which are not allowed in
the most common resonance parameter formats, such as
(n,α) and (n,p). Further, many of the ideas in this work
are even more general, and can be applied to any nuclide
of interest.

B. Overview of the available experimental data

There are several experiments covering thermal cross
sections, for (n,α), (n,p), (n,γ) and (n,tot); these experi-
ments are discussed in Sec. II and described in more detail
in Appendix A. On top of this, there are resonance pa-
rameters reported to EXFOR [10], primarily by Harvey
(EXFOR entry 10680), including α and proton widths;
these parameters are discussed more in Sec. III A. There
are also total cross section experiments ranging from 6.6
meV to 0.21 MeV reported by Harvey and Raman. No
satisfactory documentation for the above-mentioned res-

onance parameters nor for the total cross section mea-
surements has been found, and the resonance parameters
and the Harvey/Raman (n,tot) data is from the same pe-
riod in time. The resonance parameters may partially be
derived from this (n,tot) data and, therefore, the (n,tot)
data is used for thermal cross sections and for the veri-
fication of the reconstructed cross sections only (see Sec.
IVA).

C. Overview of the method and the paper’s
disposition

An overview of the work described in this paper is seen
in Fig. 1. Note that data represented by all the three
left-most boxes (thermal cross sections, resonance param-
eters and the nuclear reaction parameters of TALYS) are
sampled, with the aim to yield a quantification of the un-
certainty in the resulting ND. To begin with, the ther-
mal cross sections are sampled based on uncertainties
in the experimental setups, carefully considering corre-
lations both within and across experiments. The random
TALYS parameters used in TENDL 2015 [8] are used to
give the random TALYS results, as in Total Monte Carlo.
Resonance parameters are sampled partially based on the
resonance parameters and uncertainties mentioned in Sec.
I B. Also, positions and widths of resonances at negative
energies (bound resonances) and in the unresolved range
are sampled based on average level spacings and average
resonance widths from TALYS.

For each sampled set of resonance parameters and ther-
mal cross sections, the widths of the bound resonances
are adjusted such that the thermal cross sections recon-
structed from the resonance parameters match the ther-
mal cross sections sampled from the experimental data. If
the adjustment fails, the combination of the thermal cross
sections and the rest of the data is considered unphysical,
so the thermal cross sections and resonance parameters
are sampled again. This rejection introduces correlations
between all the different sets, since sets which are not
compatible with each other will be discarded. Correla-
tions between the different sets also arise from the use
of random information from TALYS to sample resonance
parameters and the inclusion of certain systematic errors
from the thermal cross section experiments in the reso-
nance parameters.

After the adjustment, we have a distribution of reso-
nance parameters which is adjusted to the distribution
of the thermal cross sections (based on the experimental
data). Each set of random resonance parameters is com-
bined with higher-energy cross sections, and data which
are not cross sections (e.g., angular distributions), from
TALYS, for each set using the same random TALYS pa-
rameters as was used to obtain the corresponding res-
onance parameters. In other words, the distribution of
resonance parameters is combined with a distribution of
TALYS data, keeping track of correlations arising from
the use of TALYS model parameters in both parts. This
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. results in a distribution of complete ND, which can be

formatted into n different ENDF files. This can be used
directly for Monte Carlo uncertainty propagation or to
generate one single ENDF file with covariance informa-
tion.

Sec. II discusses the experiments measuring the ther-
mal cross sections, and how the uncertainties of these ex-
periments are sampled. In Sec. III, the reader finds more
details regarding the combination of these thermal cross
sections with sampled resonance parameters and random
TALYS results.

Integrity checks of the obtained distribution of the
cross sections is performed using, e.g., Harvey/Raman’s
total cross section data in Sec. IV. The generation of one
single nuclear data file with covariance information is de-
scribed in Sec. V. Finally, the random nuclear data files
are used in a simple model of stainless steel in an LWR
spectrum in Sec. VI.

Results are presented and discussed throughout the
text, since this is believed to make the text easier to fol-
low. Conclusions are found in Sec. VII.

II. EVALUTION OF EXPERIMENTAL
THERMAL CROSS SECTIONS

There are several experiments which cover thermal
cross sections for 59Ni, ranging over (n,α), (n,p), (n,γ)
and (n,tot). In analyzing the uncertainties of these ex-
periments, an attempt is made to follow a working pro-
cess which is as transparent and objective as possible, by
treating the different experiments in a way which is as
general as possible. This general treatment, which aims
to estimate the uncertainty and correlations for the dif-
ferent uncertainty components in the experimental data,
is described in Sec. II A.

The details of the analysis, experiment by experiment,
are found in Appendix A. The resulting uncertainty com-
ponents are summarized in Table III, and the differences
between the original and evaluated experimental infor-
mation are visualized in Fig. 2.

In Sec. II B it is described how the information from
the experiments is merged together by sampling the ex-
perimental uncertainty components found in Sec. IIA.
This is analogous to how the nuclear model parameters
are sampled in Total Monte Carlo [8]. The sampling of
systematic uncertainty components is similar to the sam-
pling of systematic errors in Ref. [11]. However, the aim
of the sampling in Ref. [11] is to compute the likelihood
when comparing model parameters to experiments, while
the sampling in this work aims to directly yield the dis-
tribution of experimental data.

A. Uncertainty components

Somewhat simplified, a typical reaction cross section
measurement is carried out by letting a neutron beam
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McDonald/Sjöstrand, 1975

Werner/Santry, 1975

Jurney, 1975

Harvey et al., 1976

Ashgar et al., 1977

Raman et al., 2004

(a) As reported.

(n,tot) (n,γ) (n,α) (n,p)
0

1

2

3

C
ro
ss

se
ct
io
n
n
or
m
al
iz
ed

to
JE

F
F
3.
2

Eiland/Kirouac, 1974, evaluated
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FIG. 2: (Color online) Experimental thermal cross sections, normalized to JEFF 2.2-3.2 to enable presentation in one graph.

TABLE I: Default relative uncertainties for the constituents
of Eq. (1), (3) or (5) as well as the background subtraction,
used if other information is not found. The same values are
used for the corresponding monitor values.

Rel. std. dev. (%)
Background 1

Impurities (n,tot) 2
ε′/ε 2
ε 5
N 5
N 3
d 4

φ′/φ 2

with flux φ hit a target containing N nuclei of interest
during time t and detecting the number of counts C (of a
certain type) in a detector with efficiency ε, and the cross
section ς is obtained from1

ς =
C

εNφt
, (1)

using a thin sample approximation; see, e.g., Refs.
[12, 13]. It is assumed that the typically unavoidable
background is already subtracted from C.

The flux is implicitly or explicitly estimated using a
monitor cross section ς ′, which is assumed to be known,
by rearranging Eq. (1) to

φ′ =
C ′

ε′N ′ς ′t′
, (2)

where the prime (′) denotes that all quantities now relate
to the monitor cross section.

1 Note that cross sections are denoted “ς” in this work, to avoid
confusion with the standard deviation σ.

Multiplying Eq. (1) with φ′/φ′ and inserting this ex-
pression for φ′ (once), one obtains

ς =
CN ′t′

C ′N t

ε′

ε

φ′

φ
ς ′. (3)

Normally, φ′/φ ≈ 1 is expected, but there can be an
instability in the flux, and the exact same setup may be
difficult to reproduce, such that φ′/φ has an uncertainty.

For measurements of the total cross section ς(n,tot),
transmission experiments are used. The transmission T
is determined by [14]

T =
Cφ′t′

C ′φt
= e−Ndς(n,tot) , (4)

where the primed quantities now refer to a measurement
without a target, and where N is the nuclide density and
d is the sample thickness. Thus, the cross section is ob-
tained from

ςtot = − ln (T )

Nd
= −

ln
(

Cφ′t′

C′φt

)

Nd
. (5)

No reference cross section is needed and the detector ef-
ficiencies cancel out since only neutrons with the same
energies are detected. However, the transmission is di-
rectly affected by the total cross section of other present
nuclides in the sample. We account for this with an addi-
tional 2% default uncertainty in the background correc-
tion included in C. The choice of 2% can be discussed;
however, it should have a limited impact on the results
since it is applied to only one thermal experimental point.

For reaction cross sections, Eq. (1) is used if an uncer-
tainty estimate for the flux is quoted, and otherwise Eq.
(3) applies. In any case, Eq.(5) is used for (n,tot). From
studying the articles (or EXFOR entries if the articles are
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not found), we try to deduce which quantities were in-
cluded in the original uncertainty analysis. Uncertainties
due to contributions in Eq. (1), (3), or (5) which are not
accounted for are added according to the values quoted
in Table I. These values are based on the uncertainty es-
timates found in the (other) considered publications. For
example, uncertainties between 3% [15, 16] and 6% [15]
are quoted for the target thicknesses d and d′, and values
of about 1% [17] and 2% [15] are quoted for the densities
N and N ′. The default values 4% and 3% for d and N
combine to 5% for N , assuming that they are indepen-
dent and dominate the uncertainty inN . For the detector
efficiency, 2.5% is quoted in Ref. [13]. It refers only to
a statistical calibration uncertainty, and we believe there
are other uncertainties, too. A flux uncertainty of 3.6%
is quoted in Ref. [13], and the uncertainties of the ratios
φ′/φ and ε′/ε are assumed a little less because of the de-
sired cancellation of parts of the errors. Typically, we
choose the default values to be a little larger than the
average quoted values, to be on the conservative side. It
is difficult to avoid a certain amount of subjectivity, and
the chosen numbers may be debated. However, the gen-
eral assumptions are clearly stated in Table I, and the
detailed breakdown into individual uncertainty compo-
nents enables a motivated correlation structure.

On top of the explicit constituents of the equations,
an uncertainty due to the correction for background and
impurities is also included in Table I, while the exposure
times t and t′ are considered to be exactly known; they
are typically on the order of hours or days, so they could
easily be determined with high relative precision. The
uncertainty in N is considered to be dominated by the
thickness d and the nuclide density N .
Typically, the procedure increases the uncertainty com-

pared to what is quoted in the original paper. If an esti-
mate for the flux is quoted (in which case Eq. (1) is used),
this uncertainty is scaled to obtain the same relative in-
crease as the rest of the uncertainties. See Appendix
A 1 for an example (the only experiment considered here
which quotes a flux uncertainty).

Finally, the reference cross sections are used for renor-
malization and to add correlated uncertainty components
according to the current neutron cross section standards
[18]. Reference cross sections other than the 6Li(n,t)
cross section have greater relative uncertainty than that
of 6Li(n,t). To simplify, their relative errors are assumed
to consist of the relative error in 6Li(n,t), and another
component independent of 6Li(n,t). That is, full correla-
tion is assumed between the reference cross sections for
uncertainties up to the relative uncertainty of 6Li(n,t),
which is 0.13%. The rest of the uncertainty is considered
uncorrelated to the other reference cross sections.

B. Merging the information on thermal cross
sections

The uncertainty information deduced according to the
above is summarized in Table II. Using this information
and Eqs. (1) and (3), the error components are sampled
(see Sec. II B 2). This yields a sample from the distribu-
tion of the thermal cross sections, which is used in the
generation of random ND files in Sec. III A.

1. Renormalizing relative uncertainties

The correlations between the different uncertainties are
carefully taken into account in this work. As a first step,
however, the weighted mean values ignoring the correla-
tions of each cross section are obtained, using the inverse
of the summed variance as weight. This calculation is
done for one single purpose, namely, to renormalize the
relative uncertainties such that they are relative to this
weighted mean. For example, the weighted mean value
of the (n,γ) cross section measurements is 74.76 b. Then,
the relative uncertainties of the (n,γ) cross section from
Appendix A 7 (last line of Table II) are multiplied by the
factor 74.76/73.7, such that, e.g., the “Combined” uncer-
tainty becomes 4.49% instead of 4.43%. This is done for
two reasons:

1. The relative uncertainties should be relative to the
expected value, and the weighted mean from differ-
ent measurements is a better estimate of this

2. In Ref. [19], it was seen that a similar treatment
could help to avoid the problem of the so-called
Peelle’s pertinent puzzle [20].

Another reason for Peelle’s pertinent puzzle which has
been pointed out is linearization of non-linear functions
[21]. This is also avoided in this work, which becomes
clearer in the following sections.

For completeness, the weighted averages are found in
part i of Table III. Their uncertainties are also given, for
later comparison.

2. Sampling error components to estimate cross sections

After the renormalization of the uncertainties, the
relative error components listed in Table II are sam-
pled, with full correlations according to the alphabeti-
cal superscripts. The “Combined” uncertainty in the Ei-
land/Kirouac experiment is sampled from a t-distribution
with 5 degrees of freedom because of how the estimate was
obtained (see Appendix A1), and the others are sampled
from a distribution which is based on the normal dis-
tribution, but transformed such that negative values are
avoided, using a superposition of a normal distribution
and an exponential distribution in each dimension. The
reference cross sections are used for renormalization with
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TABLE II: Relative uncertainties (1 std. dev., in %) for different constituents of Eq. (1), Eq. (3) or Eq. (5) for the thermal
cross section measurements summarized in Appendix A. Latin alphabetical superscripts indicate (assumed) full correlation
between uncertainties with the same superscript. Similarly, Greek alphabetical superscripts stand for full correlation for half
the variance. Asterisks (∗) indicate that the uncertainty is included in the “Combined” row (if a number is given, too, the rest of
the uncertainty is included in “Combined”). †: should be sampled from t-distribution with 5 degrees of freedom. ††: Assumed
reference value based on experiments near in time. ♥: Full correlation assumed up to the relative uncertainty of 6Li(n,t), with
the rest uncorrelated. ♦: Measured relative to 58Ni (n,γ), in turn relative to 1H(n, γ).

Appendix A.1 A.3 A.5 A.6 A.7
Reaction (n,α0) (n,α0) (n,p0) (n,tot) (n,γ) (n,α0) (n,p0) (n,α0) (n,α1) (n,p0) (n,p1) (n,γ)
Est. [b] 13.7 11.1 2.0 92.28 78 11.4 1.43 13.1 0.188 1.34 0.10 73.7

Combined 6.54† - - - - - - 7.38 7.51 12.8 100 4.43
C ∗ 1.35 1.35 0.631 10.3 7.02 9.09 ∗ ∗ ∗ ∗ ∗

Backg. ∗ 1 50
√
12 + 22 1 1 50 1 1 1 ∗ 1

ε 3.20* - - - - - - - - - - -
N 5 - - 5e 5e 5e 5e - - - - -
N - 2a 2a - - - - 2a 2a 2a ∗ ∗
d - 3b 3b - - - - 3b 3b 3b ∗ 4
φ 5.85 - - - - - - - - - - -

ε′/ε - 2 2 - 2 2 2 2 2 2 ∗ 2
N ′ - - - - 5f 5f 5f - - - - -
N ′ - 20c 20c - - - - 3g 3g 3g ∗ ∗
d′ - 6d 6d - - - - 4h 4h 4h ∗ 4

φ′/φ - 2α 2α 2∗∗ 2β 2β 2β ∗ ∗ ∗ ∗ 2

ς′ 0.14i
♥

0.13i 0.13i - 0.13i 0.13i 0.13i 0.13i 0.13i 0.13i 0.13i 0.21i
♥

Ref. reaction 197Au(n,γ) 6Li(n,t) 6Li(n,t) 6Li(n,t) 6Li(n,t) 6Li(n,t) 6Li(n,t) 6Li(n,t) 6Li(n,t) 6Li(n,t) 6Li(n,t) 1H(n,γ)♦
Ref. value 98.8†† 940 940 940, 941†† 940, 941†† 940, 941†† 940, 941†† 941 941 941 941 0.3326

current values (6Li(n,t) and 197Au(n,γ) from Ref. [18] and
1H(n,γ) from Ref. [2]), and corresponding error compo-
nents are also sampled according to Table II.

In this way, all experiments are “simulated” simultane-
ously n0+n times. The first n0 simulations are performed
only to give estimates for the covariance for the different
experimental points for each reaction. These covariance
estimates are used for the last n simulations, where gen-
eralized least squares [22] is used for each reaction to ob-
tain the estimate for that cross section for that particular
simulation. In this work, n0 > 105, while n varies for the
different steps below (there is a certain progression in the
estimates).

For each simulation, the partial (n,α) and (n,p) cross
sections are summed up, and the elastic cross section is
obtained as

ς
(k′)
(n,el) = ς

(k′)
(n,tot) − ς

(k′)
(n,γ) − ς

(k′)
(n,α) − ς

(k′)
(n,p), (6)

where k′ ∈ {1, 2, ..., n0 + n} denotes simulation number
k′ and the different cross sections ς are labeled by their
respective reactions.

Using n = 40 000, the mean values and standard devia-
tions in part ii of Table III are obtained, and the correla-
tion matrix is shown in Fig. 3(a). The values differ indeed
from those obtained using the simple weighted mean, so
the correlations and/or the nonlinearities certainly had
an impact. Both the mean values and the standard devi-
ations are slightly greater than for the weighted mean val-
ues, except for (n,el). The generally greater mean values
and standard deviations can be caused by the sampling
of error components in the denominators of Eqs. (1), (3),

or (5); this can be seen to cause greater expected values
and variances than when adding relative uncertainties in
quadrature. The smaller standard deviation for (n,el) can
be explained by the positive correlations between (n,tot)
and the other cross sections (which arise from common
systematic uncertainties). Except for (n,el), all cross sec-
tions are positively correlated as one could expect because
of the common systematic uncertainties. The (n,el) cross
section is positively correlated to (n,tot) and negatively
correlated to the other cross sections as a consequence
of Eq. (6); however, the correlations to (n,α) and (n,p)
are weak. This can be explained by that their absolute
uncertainties are smaller than for (n,tot) and that they
are positively correlated to (n,tot).

Note that the mean, standard deviation, and the cor-
relations only reflect limited aspects of the (joint) distri-
bution of the cross sections, but that a random sample
from the full distribution is used in the production of the
random ND files in Sec. III.

3. Including physical constraints for better estimates

On top of the experimental information, we also know,
e.g., that the cross sections are non-negative. In partic-
ular, we know that this holds for the (n,el) cross section,
while there is a risk that a simulation according to the
above will result in negative values, if the (n,tot) cross
section happens to be less than the sum of the others.
Bayes’ theorem gives that one can simply reject physi-
cally impossible results from the sample, and redraw it
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TABLE III: Estimated expected values 〈ς〉 and standard deviations σ(ς) in barns for the thermal cross sections obtained at the
different stages of the evaluation of the thermal cross sections, and also the values from Mughabghab [2] and the evaluation
contained in JEFF 2.2-3.2 [5] (which is copied into ENDF/B-VII.1 [4]). The quoted uncertainties in the expected values are one
standard deviation of the mean, while the uncertainties of the standard deviations are determined using the method described
in Ref. [23]. The progression in this work starts with i moving through iv.

(n,α) (n,p) (n,γ) (n,el) (n,tot)
〈ς〉 σ(ς) 〈ς〉 σ(ς) 〈ς〉 σ(ς) 〈ς〉 σ(ς) 〈ς〉 σ(ς)

i W. mean 12.6 .715 1.46 .207 74.8 4.98 3.42 7.39 92.3 5.67
ii Sim. 12.833(4) 0.728(3) 1.479(1) 0.2066(8) 74.92(3) 5.02(2) 3.13(4) 7.06(2) 92.36(3) 5.85(2)

This work iii Sim. + el. > 0 12.820(4) 0.729(3) 1.477(1) 0.2066(8) 73.28(2) 4.42(2) 6.87(2) 4.87(2) 94.44(3) 5.23(2)
iv Sim. + “physics” 12.73(4) .71(3) 1.51(1) .209(9) 73.7(2) 3.8(2) 6.8(2) 3.5(2) 94.8(3) 4.7(2)
v Mughabghab 12.3 0.6 2.0 0.5 77.7 4.1 - - - -
vi JEFF 2.2-3.2 13.5 - 1.69 - 80.7 - 2.33 - 98.3 -
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(a) Without physical constraints.
Δs � 0.5 %. Corresponds to part ii in

Table III.
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(b) Positive (n,el). Δs � 0.5 %.
Corresponds to part iii in Table III.

(n,α) (n,p) (n,γ) (n,el) (n,tot)

(n,α)

(n,p)

(n,γ)

(n,el)

(n,tot)

29 17 -7 25

-4 4 9

-21 68

56

−100

−80

−60

−40

−20

0

20

40

60

80

100

C
or
re
la
ti
on

[%
]

(c) Additional physical constraints, see
Sec. III B. Δs ≈ 5 %. Corresponds to

part iv in Table III.

FIG. 3: (Color online) The correlations (%) between the different thermal cross sections obtained from the simulation of
experimental error components. The sampling uncertainties (one standard deviation) Δs are estimated analogously to the
uncertainty of uncertainty in Ref. [23].

from the original distribution (perform a new simulation),
as is shown in Appendix B.

In this way, the simulations are redone using the condi-
tion that the elastic cross section must be non-negative.
Again using n = 40 000 accepted simulations, this gives
the mean values and standard deviations of part iii of Ta-
ble III, and the correlations illustrated in Fig. 3(b). The
distribution has clearly changed. The distribution for
(n,el) is (not surprisingly) pushed towards greater values;
the new mean value is more than twice as large as before,
and the uncertainty decreases. However, the relative un-
certainty is still very large. As a natural consequence of
the increasing elastic cross section, (n,tot) also increases.
Otherwise, the most significant difference is a decrease of
the (n,γ) cross section, probably because it is the main
constituent of the (n,tot) cross section; a small (n,γ) will
reduce the risk of a negative (n,el). The correlations are
also affected by the constraint. In particular, the corre-
lation between (n,tot) and (n,γ) increases from 16% to
49%, since the restriction on (n,el) only allows (n,γ) to
be large if (n,tot) is large, too.

When the resonance parameters are adjusted to match
the thermal cross sections (described in Sec. III B), it
turns out that the adjustment procedure fails to converge
in many cases, see Sec. III B. If the adjustment does not

converge, we consider that the combination of the sim-
ulated values of ς and the rest of the ND is “unphysi-
cal”, and we redo the simulation of the thermal cross sec-
tions and redraw the resonance parameters, analogously
to when redrawing results with negative cross sections.

This procedure results in the mean values and stan-
dard deviations in part iv of Table III, and the correla-
tion matrix illustrated in Fig. 3(c). This affects the dis-
tribution of the cross sections further. For example, the
uncertainties of (n,el) and (n,tot), and the (n,α) cross
section decreases somewhat. However, since this is time-
consuming, the procedure is only followed for the random
ND files that actually are produced, and the numbers
here are based on n = 300 accepted simulations, so the
statistics are poorer, compared to the previous steps.

For all results presented here, the effect of the finite
sample size n is estimated and reported as “sampling un-
certainty”. For standard deviations and correlations, this
is done by repeatedly dividing the sample into subsets as
described in Ref. [23]. If one is interested in mean values
and standard deviations, it is often enough with a sample
size of 300; this yields an uncertainty of the mean which
is a 17th (17 ≈ √

300) of the uncertainty, and an un-
certainty of the standard deviation of approximately 4%,
relative to the uncertainty. The latter number assumes
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a normal distribution, but it agrees well with the results
obtained using the method in Ref. [23] (which does not
assume a normal distribution). These observations also
hold for propagated results. If computations are cheap,
there is no reason not to improve the accuracy by using
a larger sample size such as n = 40 000.

Finally, we may note that the mean values and stan-
dard deviations are different from, but still compatible
with, the corresponding values from The Atlas of Neu-
tron Resonances [2] and what is found in JEFF 2.2-3.2
and ENDF/B-VII.1 (which lack uncertainties), see Ta-
ble III.2 For the possibly most important cross section,
(n,α), the value obtained in this work is in between the
corresponding values in Ref. [2] and JEFF. The quoted
uncertainties in this work are similar to those in Ref. [2]
for (n,α) and (n,γ), but smaller for (n,p). Note that in
this work, the full joint distribution of the different cross
sections is estimated.

III. COMBINING THERMAL CROSS
SECTIONS WITH RESONANCE PARAMETERS

AND TALYS RESULTS

A. Resonance parameters

Except for the measurements on thermal cross sections
summarized in Appendix A, EXFOR contains experimen-
tal cross section data for the total cross section for higher
energies. This data comes from the same series of mea-
surements as described in Appendix A5 (for which we did
not find much documentation), and from Raman, 1975.
Both sets of data are from ORNL, and Harvey is a co-
author of the Raman data set; it also has the same prob-
lem with the documentation. In the same EXFOR entry
as the Harvey data in Appendix A 5, parameters for re-
solved resonances are also reported, referring to “Harvey,
Private communication, 1980”. The resonance parame-
ters are resonance energies Eλ, neutron, γ, α and proton
widths (Γn, Γγ , Γα and Γp) and quantum numbers � and
J , for each level λ. These parameters are tabulated in
Table IV, where they are also compared to the parame-
ters finally obtained in this work. For one energy (203.4
eV), there are also some resonance parameters reported
by Kirouac, 1975, but this does not include α and p-
widths. Since the different widths should be determined
simultaneously, the Kirouac parameters are ignored.

Because it is likely that some of the resonance parame-
ter data has its origin in the reported cross section data,
one should not carelessly make use of both. Therefore, we
use only the resonance parameters of Harvey, and leave

2 For the (n,el) cross section, the JEFF 2.2-3.2 value is not within
one standard deviation, but rather 1.3 standard deviations. As-
suming normal distributions, this corresponds to a p-value of
20%, and we consider this consistent.

the (n,tot) cross section measurements for verification of
the results.

In this work, the resonance parameters can be divided
into three categories: resolved resonance parameters, un-
resolved resonance parameters and parameters for bound
resonances. The treatment of these three categories is
found in Secs. III A 1, IIIA 2, and IIIA 3, respectively.
For some of the resonances, Harvey does not give the
complete set of parameters. This is treated by sampling
the missing information, building upon the sampling of
completely unmeasured resonances in Secs. III A 2 and
IIIA 3. The technical details are found in Appendix C.

1. Sampling completely reported resonance parameters

Harvey’s resonance parameters are sampled using nor-
mal distributions with expected values and standard devi-
ations from the central values and uncertainties provided
in the EXFOR entry. Parameters given as an upper limit
are assumed to be exponentially distributed (which re-
sults in a 100% uncertainty) with 1/3 of the upper limit
as expected value. This choice is made to give only a
small probability (5%) to exceed the upper limit and to
get an increasing probability density close to zero. The
choice can be discussed, but it will have an impact only on
quantities which are very uncertain and, typically, small
in magnitude, therefore having a limited impact on re-
sults. We believe it is more reasonable to assume an ex-
ponential distribution than, say, a uniform distribution
since an upper limit is likely to have its origin in an un-
detected result which are likely to be caused by values
close to zero.

On top of sampling from the provided uncertainties, we
approximate the systematic errors sampled for Harvey’s
thermal cross section data for the reaction cross sections.
For the fully correlated uncertainty components for (n,γ),
(n,α) and (n,p) in the Harvey experiment in Table III, the
approximation is done by adding the same relative errors
Δγ ,Δα and Δp, respectively, to each of Γγλ,Γαλ and Γpλ

for all resonance levels λ. It is assumed that

ς(n,r)(E) = hr(E)
∑
λ

Γrλ, (7)

for some function hr(E) which does not depend on any
Γrλ, and where r ∈ {γ, α, p}. This equation approximates
the corresponding Multi-Level Breit-Wigner (MLBW)
formulas if |E − Eλ| � Γλ (where Γλ is the total width)
for all λ [9], i.e., everywhere not too close to a resonance.
When adding the relative errors above, the resulting cross
sections become

ς(n,r)(E) + Δς(n,r)(E) = hr(E)
∑
λ

Γrλ (1 + Δr) , (8)

where Δς(n,r)(E) is the resulting error in ς(n,r)(E). This
yields that the resulting relative errors in the cross sec-
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Harvey’s quoted resonance parameters (from EXFOR entry 10680) with quoted uncertainties, as well as the mean values and uncertainties obtained in this
work, discussed in Sec. III F. The quoted sampling uncertainties in the expected values are one standard deviation of the mean, while the sampling uncertainties of
the standard deviations are determined using the method described in Ref. [23]. The values of this work which deviate more than 3 standard deviations in sampling
uncertainty from Harvey’s quoted values are highlighted in boldface. For the cases with sampled � and J (when not provided by Harvey), the observed relative
frequencies are found in Table VIII. Asterisks (∗) indicate that an upper limit was given in Harvey’s data; the quoted value is 1/3 of this limit, and a 100% uncertainty
is used. The three latter quantities are not stored in the ENDF files produced later, and only computed for this work when given in Harvey’s data, for verification
purposes. There are also resonances noted by Harvey at (1333 ± 1) eV and (1742 ± 2) eV , both with (�, J) = (0, 2), and small values given for ΓnΓp/Γtot. When
studying (n,tot) data (see Sec. IVA), these resonances cannot be clearly distinguished, so they are only used in the determination of (�, J) for other resonances.

Eλ σ 〈Γn〉 σ 〈Γγ〉 σ 〈Γα〉 σ 〈Γp〉 σ 〈�〉 σ 〈J〉 σ 〈Γtot〉 σ
〈

ΓαΓn
Γtot

〉
σ

〈
ΓpΓn
Γtot

〉
σ

Harvey 203.40 .20 9.60 .20 3.10 .30 .430 .030 .0550 .0050 .0 .0 1.0 .0 − − − − − −
This work 203.40(1) .195(8) 9.54(1) .203(9) 2.63(1) .21(1) .415(2) .040(2) .0331(9) .0148(5) 0 .0 1 .0 − − − − − −
Harvey 3203.0 1.0 11.2 1.5 .80 .20 .00020∗ .00020 .124 .080 1.0 .0 2.0 .0 − − − − − −

This work 3202.92(6) .97(4) 11.15(9) 1.52(6) .79(1) .209(8) .00019(1) .00019(2) .123(6) .099(7) 1 .0 2 .0 − − − − − −
Harvey 4211.0 3.0 183 12 3.7 1.0 .1400 .0040 .2900 .0070 .0 .0 1.0 .0 − − − − − −

This work 4210.9(2) 3.0(1) 182.7(7) 12.1(5) 3.51(6) .98(4) .1353(6) .0105(5) .273(8) .133(8) 0 .0 1 .0 − − − − − −
Harvey 6230 20 − − .20∗ .20 − − − − − − − − − − − − − −

This work 6231(1) 19.0(8) 70(8) 140(18) .20(1) .20(1) .14(3) .48(9) .19(3) .48(7) .44(3) .498(3) 1.68(3) .55(3) − − − − − −
Harvey 6276 10 265 20 .90 .40 .0016 .0011 .00310 .00060 1.0 .0 2.0 .0 − − − − − −

This work 6276.2(6) 9.6(4) 264(1) 19.5(8) .90(2) .42(1) .00154(7) .0012(1) .00291(9) .00163(6) 1 .0 2 .0 − − − − − −
Harvey 6360 20 − − .20∗ .20 − − − − − − − − − − − − − −

This work 6360(1) 20.0(8) 63(7) 122(11) .20(1) .19(1) .21(4) .7(2) .19(3) .5(1) .57(3) .496(4) 1.65(3) .54(2) − − − − − −
Harvey 9103 20 64 27 1.10 .23 .230 .020 .051 .013 1.0 .0 1.0 .0 − − − − − −

This work 9102(1) 20.7(8) 61(2) 28(1) 1.08(1) .24(1) .220(2) .027(1) .049(2) .029(1) 1 .0 1 .0 − − − − − −
Harvey 9227 20 − − 1.7∗ 1.7 − − − − − − − − 30 15 − − − −

This work 9229(1) 20.5(9) 17.6(8) 14.2(6) 1.7(1) 1.7(1) 5.4(5) 8.6(7) 5.4(5) 8.8(8) .71(3) .45(1) 1.85(3) .45(4) 30.1(8) 13.8(5) − − − −
Harvey 9850 30 − − .40∗ .40 − − − − − − − − 6.6 6.6 − − − −

This work 9850(2) 30(1) 4.6(3) 5.4(5) .37(2) .38(3) .7(1) 1.7(2) 1.1(2) 2.7(4) .64(3) .480(8) 1.83(2) .43(4) 6.7(4) 6.5(5) − − − −
Harvey 11100 30 − − 2.0∗ 2.0 .010∗ .010 .390 .040 − − − − 40 20 − − − −

This work 11104(2) 28(1) 38(1) 19.7(8) 2.0(1) 1.8(1) .0089(5) .0090(7) .376(2) .043(2) .54(3) .499(3) 1.987(7) .11(3) 41(1) 19.7(8) − − − −
Harvey 11530 30 − − 1.4∗ 1.4 .010∗ .010 .240 .030 − − − − 60 30 − − − −

This work 11530(2) 30(1) 56(2) 30(1) 1.36(8) 1.4(1) .0103(6) .0107(7) .233(2) .032(1) .51(3) .5008(4) 1.94(1) .25(3) 58(2) 30(1) − − − −
Harvey 14400 70 − − − − − − − − − − − − − − − − .080 .020

This work 14399(4) 68(3) 125(14) 247(24) 1.62(7) 1.1(1) .36(5) .8(1) .6(2) 3(1) .50(3) .5008(2) 1.55(3) .56(2) − − − − .080(1) .0197(8)
Harvey 17200 80 − − − − − − − − − − − − − − .11 .020 .060 .020

This work 17195(5) 78(3) 120(16) 281(42) 1.59(7) 1.1(1) .7(1) 2.5(6) .4(1) 1.9(6) .55(3) .498(3) 1.64(3) .53(2) − − .106(1) .0185(8) .057(1) .0210(8)
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tions are

Δς(n,r)(E)

ς(n,r)(E)
= 1 +Δr. (9)

Thus, the fully correlated experimental errors in the reac-
tion cross sections are approximated by adding the same
relative errors to the corresponding widths. Note that the
relative errors obtained for Harvey’s thermal cross section
experiment are used. Further, the uncorrelated system-
atic uncertainty components are added as relative un-
correlated uncertainties on the corresponding resonance
parameters using Eq. (9) as motivation, even if this will
give correlations between neighboring points.

For the elastic cross section it is not as easy to find
a simplified analytic expression, and no attempt to ap-
proximate the systematic (n,tot) uncertainties is done.
However, the above procedure will infer increased uncer-
tainties on the (n,tot) cross section as well.

2. URR parameters and sampling of resonances in the
unresolved range

For energies between 38.9 keV and 336 keV, each ran-
dom set of nuclear data is provided with URR parameters
from TALYS 1.8 [24] for the same set of random param-
eters as used in TENDL-2015 [8], i.e., the URR parame-
ters will vary between the random files, consistently cor-
related to the other information from TALYS. For ener-
gies between EURR,0 = 17.2 keV and EURR,1 = 38.9 keV,
resonances are sampled based on the same set of URR
parameters, similarly to how the URR parameters are
used in, e.g., the NJOY module PURR [25] to produce
probability tables. This is also similar to the sampling
of resonance parameters in Refs. [26, 27], but with a few
differences. Only one random ladder of resonance en-
ergies is sampled in Refs. [26, 27], while, in this work,
one random set of resonances (including their positions)
is sampled for each random set of ND, and each time
using URR parameters obtained from the corresponding
random TALYS parameters. However, the distribution
of the resonance energies is somewhat simplified in this
work (Wigner distribution), compared to Refs. [26, 27].

In this work, resonance ladders are sampled for all com-
binations of orbital angular momenta � and resonance
spins J for � ∈ {0, 1, 2}. For each such (�, J), the lad-
der starts from the highest energy resonance. For each
step in the ladder, the energy increment to the next res-
onance is sampled using the Wigner distribution (a semi-
circle) with expected value and radius equal to the av-
erage level spacing given by TALYS at the energy3 Eλ

of the starting step (the URR parameters vary slowly

3 The URR parameters are linearly interpolated using a fine energy
grid. This is judged to have a very small impact, because the
parameters vary slowly with energy.

with energy), D�,J(Eλ). The widths are sampled using
the χ2-distribution with expected values according to the
URR parameters and νn = 2, νγ = 10, να = 1 and νp = 1
degrees of freedom (DOF) for Γ�,J

n ,Γ�,J
γ ,Γ�,J

α and Γ�,J
p , re-

spectively. Using 2 DOF for Γ�,J
n follows the recommen-

dation from Ref. [9] since the spin of 59Ni is 3/2. The
other values can be considered somewhat conservative,
since radiative capture proceeds through “many” chan-
nels4 and 1 is the minimum possible DOF (lower DOF
gives larger spread in the sampled values).

The first step in the ladder requires special care, be-
cause it is desired to sample only in the desired energy
range, but starting from a resonance which is located be-
low or at the lower boundary of the range. Therefore,
the distribution should be set to zero below the energy
range, and could be renormalized to ensure an integral of
1. However, there is a risk that the highest energy reso-
nance for the considered (�, J) is not reported among the
measured resonances (or that the approximation to use
a Wigner distribution for the levels is imprecise), with
the possible result that the distribution becomes unde-
fined; i.e., all the probability mass of the original Wigner
distribution is outside the energy range. In such cases,
the starting position is first sampled uniformly in the
range

[
EURR,0 − 2D�,J(EURR,0), EURR,0

]
, that is, assum-

ing that there is an unmeasured level consistent with the
average level spacing and the Wigner distribution, but
without any other information of its position.

3. Sampling bound resonances

Bound resonances (resonances at negative energies) are
not measured directly but impact the thermal cross sec-
tions. In this work, positions and widths of such reso-
nances are sampled, and later the widths are adjusted
to match the thermal cross sections as described in Sec.
III B.

The sampling is very similar to the sampling in the
URR described in Sec. III A 2, except that the ladder
now starts at the resonance with the lowest energy for
the considered (�, J) and decreases in energy. The up-
per boundary in this case, E = 0, is treated as the lower
boundary in Sec. IIIA 2. The average level spacings and
widths are obtained by forcing TALYS to return URR
parameters for E = 10−4 eV (“almost zero”). Again, the
same TALYS parameters are used as for the TENDL-2015
random files.

For each (�, J), two bound resonances are sampled.

4 In Ref. [9], the DOF for Γ�,J
γ is recommended to be approximated

by infinity, but this is the opposite of conservative.
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B. Adjustment to the thermal cross sections

For each random set of nuclear data, the thermal cross
sections have been sampled as described in Sec. II, and
resonance parameters have been obtained as in Sec. III A,
sampling from both experimental data and output from
TALYS using randomly sampled parameters. As detailed
below, these two bodies of information are combined by
adjusting the widths of the (sampled) bound resonances,
such that the thermal cross sections reconstructed from
the parameters agree with what was obtained from sam-
pling from experimental data.

The adjustment is carried out by multiplying the
widths for the same channel (n, γ, α or p) by a common
factor ζr for all bound resonances ( r can be replaced by
n, γ, α or p). The multiplication factors are found by
numerical root-finding in an iterative procedure over the
widths:

1. The Γn are adjusted until (n,el) agrees

2. The Γγ are adjusted until (n,γ) agrees

3. The Γα are adjusted until (n,α) agrees

4. The Γp are adjusted until (n,p) agrees

5. Terminate iteration if all thermal cross sections
agree within 0.1 mb (less than 0.01%). Otherwise,
go back to point 1.

The procedure is repeated until all the thermal cross sec-
tions agree within 0.1 mb (less than 0.01%).

As a first attempt, the root-finding is carried out using
the function optimize.newton of the Python [28] pack-
age scipy [29], with ζr = 1 as starting guess. If the
optimize.newton does not converge (to a non-negative
solution), another and more safe attempt is made. This
starts with a search for a sign change (of the function
to find the zero for) between ζr = 0 and ζr = 512,
starting with ζ = 1 and then a stepwise increase of
the interval length with a factor of 2. If an interval
with a sign change is found, the root finding function
optimize.brentq (also from scipy) is used.
If this procedure does not find a root, it is concluded

that the combination of the rest of the random file and the
simulated thermal cross sections are incompatible (“un-
physical”), and the thermal cross sections are simulated
again, as motivated in Sec. II B. It turns out that about
95% of the samplings are redrawn. Thus, this approach
can impact the distribution of the thermal cross sections
and the other uncertain parameters significantly. Under
the assumption that the incompatible sets of data are
unphysical, this is a desired behavior of the method. For
example, many combinations of low energy resonance pa-
rameters, bound levels, and thermal cross sections cannot
combine. It is possible that the root-finding fails to con-
verge even if there is a physically consistent solution, but
we believe that the combination of root-finding routines
described above is robust.

If it would be undesired to let some set of data to be
affected by the others, one can restrain from redrawing
that set of data if the convergence fails.

C. Energy grid for pointwise cross sections

The (n,α) and (n,p) cross sections are reconstructed
from the resonance parameters obtained above and are
stored as pointwise cross sections. This is done because
the format does not allow for storing them as resonance
parameters without moving to the “LRF=7” format [9],
which would demand a more detailed knowledge than
found in the available experimental data (or wild assump-
tions).

To follow the convention used in the TENDL data (see
Sec. IIID), linear-linear interpolation is used (even if log-
log interpolation can be more efficient for lower energies).
The energy grid used for the pointwise representation is
set up starting from a coarse grid including the resonance
energies. It is then progressively made denser by intro-
ducing new grid points between old grid points, if this
is necessary to reach certain tolerances for the pointwise
interpolation error and an “integral” interpolation error.
The integral interpolation error is defined as the error in

I =

∫ ∞

0

ς(E)

E
dE. (10)

The interpolation error of this integral can be approxi-
mated by

ΔI ≈ 1

2

N∑
i=1

Δς(Ei)ΔEi

Ei
≤ N

2
max

∣∣∣∣Δς(Ei)ΔEi

Ei

∣∣∣∣ (11)

where ΔEi is the length of the energy interval associated
with the energy point Ei, and Δς(Ei) is the interpola-
tion error in ς(Ei). Thus, the integral interpolation error
meets the relative error tolerance tI if

|Δς(Ei)| ≤ 2EiItI
NΔEi

. (12)

The grid is densified until the pointwise interpolation
error is less than 1% and the integral interpolation error
is less than tI = 0.01%. For the random ND sets in this
work, the procedure results in grids that contain between
3000 and 8700 points.

D. Assembling complete random ENDF files

For each random set of ND, the resonance energies Eλ,
and the widths Γtot, Γn and Γγ are stored in MF=2 of
the ENDF-6 format [9], using LRF=2 (Multi-Level Breit-
Wigner). The randomly generated URR parameters men-
tioned in the beginning of Sec. III A 2 are also added to
MF=2, with LRP=LSSF=1 such that they are only used for
self-shielding.
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FIG. 4: (Color online) The cross sections resulting from this
study as functions of energy from E = 1 meV to E = 30 MeV,
with a one standard deviation uncertainty band.

The (n,α) and (n,p) cross sections are reconstructed
onto the energy grid described in Sec. III C and stored in
MF=3. All (infinite-dilute) cross sections at energies be-
tween 38.9 keV and 200 MeV are taken from the random
files of TENDL-2015 and are also put in MF=3.

Finally, the remainders of the random files (every-
thing except cross sections and resonance parameters) are
copied from the random files of TENDL-2015. Note that
for each random ND file, the same TALYS parameters
are used in Sec. III as in TENDL-2015.

E. Resulting cross sections

The resulting cross sections and their uncertainties are
illustrated in Fig. 4, where smoothing is applied in the
part of the URR where resonances are sampled (see Sec.
VA). The cross sections show a rather expected behav-
ior: for lower energies, the non-elastic cross sections show
a 1/

√
E dependence and the elastic cross section has a

constant value. This is followed by a few resolved res-
onances between about 200 eV and 20 keV, and above
these energies, the cross sections show a smooth behav-
ior (in the URR because they are smoothed). The rel-
ative uncertainties are smaller for lower energies, while
the uncertainty bands can span orders of magnitude for
higher energies, in particular in the valleys between reso-
nances (where the absolute uncertainty nevertheless may
be small).

For the (n,α) cross section, the energy-energy covari-
ance matrix is also illustrated, in Fig. 5, by showing
the relative uncertainty as a function of energy and the
energy-energy correlation matrix. For the covariance, a
199 group structure is used, see Sec. VB. The figure also
shows the cross section itself compared to JEFF 2.2-3.2
(which is copied to ENDF/B-VII.1).

One can tell that the relative uncertainty for (n,α) is
rather constant, about 5%, up to a few tens of keV; this

FIG. 5: (Color online) The energy-energy covariance matrix
for the (n,α) cross section resulting from this study, illustrated
by the corresponding correlation matrix and the relative un-
certainty (one standard deviation) as a function of energy.
The cross section itself is also plotted as a function of energy
and compared to JEFF 2.2-3.2.

is determined by the thermal cross section uncertainty.
The uncertainty increases for the RRR where it fluctu-
ates with the resonances and ranges from about 10% to
several hundred %. For higher energies, the uncertainty
is more steady at about 80%, agreeing well with what is
found to be the “global (n,α) uncertainty” in Ref. [30].
If one studies the relative uncertainties for the other par-
tial cross sections, quite similar behavior is seen: a con-
stant value determined by the thermal cross section un-
certainty below the resonance range, greater fluctuating
values in the resonance range, and rather constant values
for higher energies, agreeing with the “global” uncertain-
ties in Ref. [30].

The correlation matrix has four blocks with strong cor-
relation:

1. Up to and including the resonance at 203.4 eV, in-
dicating that this resonance dominates the lower
energy cross section.

2. The rest of the RRR (up to 17.2 keV); somewhat
fluctuating.

3. The part of the URR with sampled resonances (up
to 3.89 keV); the used URR parameters are the
same for each random set of ND.
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FIG. 6: (Color online) Cross-channel energy-energy correla-
tion matrix. The energy axes are unlabeled because of the
limited space, but they are logarithmically spaced between
1 meV and 30 MeV, just as in Fig. 5. Note that other re-
action channels than those presented in the figure also have
cross-channel correlations.

4. Higher energies; model correlations from TALYS.

Note that there are correlations between the different
blocks described above, too, particularly significant be-
tween the latter two blocks (because the used URR pa-
rameters are obtained from the same TALYS runs). Note
also the negative correlations occurring between reso-
nance peaks and valleys. The correlation matrices for the
different partial cross sections follow quite similar pat-
terns (not illustrated in detail).

There are also strong cross-channel correlations, illus-
trated in Fig. 6. The correlations arise from the correla-
tions between thermal cross sections, but also from the
resonance parameters, the nuclear reaction models, and
how all these combine.

It can be noted that, under the assumption of a mul-
tivariate Gaussian, a sample correlation ρ which satisfies

|ρ| < ρsignif. =
tα/2(n− 2)√

n− 2− tα/2(n− 2)
, (13)

where n is the sample size and tα(n−2) is the α-quantile
of the Student’s t-distribution with n− 2 degrees of free-
dom, is insignificantly different from zero with signifi-
cance level 1−α [31]. That is, the (possible) null hypoth-
esis that the true correlation is zero cannot be rejected.
In this case, n = 300, which yields tα/2(n − 2) = 1.97
(if α = 5%), in turn giving ρsignif. = 11%. Thus, as-
suming the null hypohesis that the true correlation is
zero between two points, this null hypothesis cannot be
rejected if the magnitude of the observed correlation is

less than 11% (with a significance level of 95%). Infor-
mally, one could say that sample correlations ρ such that
|ρ| < ρsignif. very well may be observed “by chance”. This
does not mean that the correlation is zero; it could also
be that the test is too weak, i.e., that the true correlation
is too small to be “detected” with such a sample size.

It can be mentioned that the distribution of the cross
sections is non-normal. Studying the marginal distribu-
tions of the different cross sections per energy, it is found
that the p-value for normality (using the Shapiro-Wilks
test) is very small for most cross sections at most ener-
gies. At the thermal point, normality can be rejected for
(n,el), (n,α), and (n,p), which have p-values less than 0.01
and skewness values of 0.97, 0.43 and 0.47, respectively.

The (n,α) cross section of this work agrees rather well
(� 1σ difference) with that in JEFF 2.2-3.2 in the fast
range and for energies below the third resonance. This
third resonance is smaller for JEFF and outside the un-
certainty band. For the following resonances represented
in JEFF, the central curves differ but within the uncer-
tainty. The JEFF curve becomes smooth at lower ener-
gies than in this work, which gives a certain disagreement.
The overall agreement is similar or better for the other
channels, except for (n,tot) and (n,p) in the fast range.

F. Resulting resonance parameters

The resonance parameters resulting from the above
procedure are tabulated, along with Harvey’s quoted res-
onance parameters, in Table IV. Some alternative infor-
mation, such as ΓnΓα/Γtot, is also tabulated in some cases
for comparison with Harvey’s quoted values. Note that
only mean values and standard deviations are tabulated;
correlations and higher moments are not looked into, but
are nevertheless represented in the distribution of the pa-
rameters in the random sets of nuclear data.

In most cases, the values of this work agree well (within
the sampling uncertainty) with Harvey’s quoted values.
The most distinguishing exception is the parameters of
the lowest energy resonance: all expected values and
almost all standard deviations deviate more than three
sampling uncertainty standard deviations. This can be
explained by the rejection of samples which fail to repro-
duce the thermal cross sections; the lowest energy res-
onance impacts the thermal cross sections substantially
and the thermal cross sections seem to indicate generally
smaller resonance parameters than Harvey’s values for
this resonance. A similar reasoning could help explain
the (less distinguished) deviations for the resonance at
4211 eV.

We consider it desirable that the thermal cross sections
impact the resonance parameters (and vice versa), since
we obtain a combination of both sources of information.
If this would not be desired, the resonance parameters
can be held fixed when redrawing the other information
(see Sec. III B).

Even in the cases with a deviation which is large com-
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pared to the sampling uncertainty, the deviations be-
tween the parameters of this work and Harvey’s are small
compared to the actual uncertainty of the parameters.
Only in one case, Γp for the 203.4 eV resonance, the one
standard deviation uncertainties do not overlap.

In some other cases, the standard deviations are greater
for this work; this is not very surprising since approxi-
mative systematic uncertainties have been added to the
resonance parameters. Further, it can be noted that 〈Γp〉
is significantly less in this work for a couple of resonances
when Γtot (and not Γn) is given by Harvey. This is prob-
ably because Γtot limits the other widths. Finally, the
values for 〈ΓαΓn/Γtot〉 disagree for the highest energy res-
onance. This can be explained by the condition that the
total width cannot be less than any sum of partial widths,
which yields a lower limit for Γn (details in Appendix C).

IV. INTEGRITY CHECKS OF THE RESULTING
DATA

A. Using Harvey’s and Raman’s (n,tot) data

In EXFOR, there are 9 EXFOR subentries for Har-
vey/Raman from 1975 to 1976. Because of lacking doc-
umentation, we assume that this data is involved in de-
termining the resonance parameters that are used in this
work. Therefore, we do not infer much information from
this (n,tot) data, except for the conclusion that the reso-
nances at 1333 eV and 1742 eV are weak (see the caption
of Table IV). Instead, the data is used to verify the dis-
tribution of the cross sections obtained in this work.

The comparison between the evaluated cross sections
and the experimental data is performed in “transmission
space”, i.e., the evaluated as well as the experimental
data is transformed using

T (E) = e−Ndςtot(E), (14)

where T is the transmission and Nd is the number of nu-
clides per area, which is provided in the EXFOR entries.

For the evaluation, T is computed for each random set
of nuclear data, such that a distribution for T is obtained,
from which a mean vector Teval and a covariance matrix
Ceval can be computed. The transmission is computed on
the energy grid of the experimental data.

For the experimental data, sampled curves for T are
also obtained, by sampling from the experimental uncer-
tainty of ςtot and from an assumed uncertainty of 5% on
Nd (same for all energies). A mean vector Texp and a
covariance matrix Cexp are computed. When computing
Cexp, uncertainties as for Harvey’s (n,tot) cross section
data in Table IV are added.

As an example, the agreement between the evalua-
tion and the experimental set from EXFOR subentry
10680010 is seen in Fig. 7. The evaluation appears to
follow the experimental data, and this is confirmed by a
reduced χ2 of 1.00.
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FIG. 7: (Color online) Comparison between the evaluation
and (n,tot) data from EXFOR subentry 10680010, in trans-
mission space.

Using the mean values and covariance matrices ob-
tained for the evaluation and the experimental data, the
generalized χ2 is computed for each EXFOR subentry to
compare their agreement, according to

χ2 =
1

2
(Teval−Texp)

T(Ceval+Cexp)
−1(Teval−Texp). (15)

More specifically, we consider the reduced χ2, χ2
red =

χ2/m, where m is the number of experimental points.
The reduced χ2 should be distributed around 1, assum-
ing that the evaluation is not fit to this data. We also
consider the corresponding p-values which makes better
use of the distribution for the χ2-statistic.
The computation of the χ2 is also done using Ceval = 0,

to enable a comparison of the agreement of the mean
transmission to that of JEFF 2.2-3.2 (which doesn’t pro-
vide uncertainties).

The resulting χ2
red values are seen in the first part of

Table V. The number of degrees of freedom is so large
in all these cases that the corresponding p-values are ei-
ther practically zero (if χ2

red > 1) or practically one (if
χ2
red < 1). As can be seen, three of the EXFOR suben-

tries (13774004, 13775002 and 13775003; all from 1975)
agree very poorly with this evaluation, but also to JEFF
2.2-3.2. Inspecting these subentries further, one finds
that they disagree very strongly with each other and the
other 6 subentries, suggesting that they are erroneous, or
erroneously reported. In Ref. [32] (one of the limited ref-
erences to the considered Harvey/Raman data) an error
in sample mass is mentioned. This error could explain
some of this dubious data.

For the other 6 subentries, 0.30 ≤ χ2
red ≤ 1.00, indi-

cating an excellent agreement. The agreement can be
interpreted as “too good”, but this is expected since the
considered data is suspected to have been used to de-
termine the resonance parameters which have provided
a base for the resonance parameters in this work; i.e.,
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TABLE V: The reduced χ2 values obtained when comparing the different experimental (n,tot) sets to this evaluation (with and
without covariances) and JEFF 2.2-3.2.

Reduced χ2

This work
JEFF 2.2-3.2

1st author Year EXFOR ID Energy range [eV] Incl. eval. cov Excl. eval. cov
Raman 1975 13774002 .329− 1.48 · 105 0.56 1.40 0.68
Raman 1975 13774003 .243− 1.55 · 104 0.30 0.47 0.45
Raman 1975 13774004 53.5− 495. 3.9 5.9 6.4
Harvey 1975 13775002 4.59− 2.19 · 105 6.1 17.5 16.4
Harvey 1975 13775003 43.9− 2.19 · 105 11.5 47 39
Harvey 1975 13875002 .00662− 1.48 · 105 0.73 0.85 0.90
Harvey 1975 13875003 .00662− 1.48 · 105 0.89 1.10 1.17
Harvey 1976 10680009 1.98− 2.02 · 105 0.89 2.4 1.28
Harvey 1976 10680010 .00592− 2.11 · 105 1.00 1.99 1.27

Thermal cross section exp. 0.44 0.45 1.12

a very good agreement is to be expected. Hence, the
(n,tot) data is not perfectly suitable as validation data,
but is rather used for an integrity check.

When comparing only the central curve of the evalu-
ation to the experimental data, the agreement is worse;
many χ2

red-values are substantially greater than one. This
is not surprising, since an evaluated uncertainty of zero
is equivalent to assuming that the evaluation perfectly
represents the truth. Nevertheless, the agreement for the
central curve is in three cases substantially worse, but
never much better, than for JEFF 2.2-3.2. It could be
that the JEFF cross sections are adjusted to some of this
total cross section data, and that it is based more exclu-
sively on this Harvey/Raman (n,tot) data than the cross
sections of this work, the latter also taking several differ-
ent thermal experiments into account. Additional fitting
to the (n,tot) data could lead to unfairly reduced uncer-
tainties, but also to a larger deviation to the other cross
sections.

B. Using thermal cross section data

On the last row of Table V, there are values for χ2
red

when doing the same comparison as in Sec. IVA, but for
the thermal cross section data considered in Sec. II. The
experimental data is taken as it is after the analysis of the
individual experiments, but without introducing physical
constraints (corresponding to part ii in Table III).

For the Ashgar data, (n,α) of the evaluation is com-
pared to the sum of (n,α0) and (n,α1), and (n,p) is com-
pared to the sum of (n,p0) and (n,p1). In the other cases,
(n,α) is compared to (n,α0), and (n,p) is compared to
(n,p0). This leaves 10 points for comparison. The ex-
perimental covariance matrix is obtained as the sample
covariance for these experimental points, sampled accord-
ing to Sec. II B 2.

In this case, the difference between the results of this
evaluation, when including or excluding the covariance of
the evaluation, is small. This is because the uncertainty
of the experiments is substantially greater; it is expected

that the evaluation has smaller uncertainty since it, in a
sense, is a fit to the experimental data. Again, the χ2

red
values are “too” low because we have made use of this
data in the evaluation. The agreement between JEFF
2.2-3.2 and the thermal cross section experiments is worse
(but not bad), which is not surprising since JEFF 2.2-3.2
is not adjusted directly to this set of evaluated experi-
mental data.

In the computation of χ2
red, no reduction of the de-

grees of freedom due to fitting has been performed, since
it is not well-defined for non-linear models. However, if
we consider it as we have fitted 4 parameters (the four
partial thermal cross sections), the χ2

red comparing this
evaluation to the thermal cross section data is 0.73, cor-
responding to a p-value of 0.63.
Note that a comparison to 10 experimental points con-

stitutes a rather weak statistical test; with a 95% confi-
dence level, insignificant results are obtained for 0.32 <
χ2
red < 2.05 and 0.21 < χ2

red < 2.41, assuming 10 or 6
degrees of freedom, respectively. Thus, relatively large
deviations would be necessary for a disagreement to be
detected.

V. FROM RANDOM FILES TO ONE FILE
WITH COVARIANCES

It is straightforward to use the random files produced
within this evaluation for Monte Carlo uncertainty prop-
agation, since the distribution of the ND is intended to
describe the probability density of the considered ND,
given the current state of knowledge. However, ND un-
certainty propagation is still dominated by linear error
propagation, and the ND uncertainty representation is
still dominated by covariance matrices. Therefore, the in-
formation contained in the random ND files is condensed
(with certain information loss) into one single ENDF file
with covariances. Such a file is now part of a beta version
of JEFF 3.3.
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A. Smoothing sampled URR and incompletely
reported resonances

In the part of the URR where resonances are sam-
pled, we do not know the positions of the resonances
and the best guesses for expected cross sections should
be a smooth function of energy; the resulting mean curve
would also be smooth if a large enough sample size was
used. However, due to the finite sample size, a simple
mean (on some grid) will cause the cross section curve to
be very ragged in this region. This would not be physi-
cally motivated, but just a result of random fluctuations.
Therefore, Gaussian kernel smoothing is applied to the
mean curve in this region. The standard deviation of the
Gaussian kernel is set to the maximum of the level spac-
ings (with respect to the quantum numbers) according to
the URR parameters provided by TALYS for the nominal
set of parameters in TENDL-2015, and the kernel is cut
off at 3 standard deviations. Close to the boundary of
unsmoothed energies, the kernel’s standard deviation is
decreased such that the kernel does not reach outside the
smoothed region.

The same smoothing methodology is applied to res-
onance peaks for resonances that are incompletely re-
ported and, therefore, have sampled quantum numbers
resulting in very varying shapes of the resonances. Some
peaks are substantially more narrow than the uncertainty
of the position of the resonance, giving rise to ragged
peaks of the average cross section. Again, this shape
is unphysical. The smoothing is applied for energies
Eλ ± 4ΔEλ, where Eλ is the expected resonance energy
and ΔEλ its standard deviation. The kernel standard
deviation equals ΔEλ (decreased towards the boundaries
as described above).

B. Covariances

1. Cross sections

The cross sections (including reconstructed resolved
resonance parameters) of each random set of ND is col-
lapsed into a 199 group structure, where the group limits
are set up at the energy grid points such that the num-
ber of grid points in each group is as constant as possible.
Since the grid is adapted to the structure of the cross sec-
tion to fulfill certain interpolation error tolerances, this
yields a group structure which captures the particular
cross section structure of 59Ni.

Then, the sample covariance is computed between each
such energy group (when non-zero) for all channels (MT
numbers) present in the file except inelastic scattering to
excited levels above the 20th. The upper triangle of this
covariance matrix is then stored in submatrices represent-
ing one or two channels in MF=32 following the ENDF-6
format [9], using the format flags LB=5 and LB=6. An
additional component is added to the diagonal of the co-
variance matrix using LB=8, increasing the uncorrelated

variance by 1%. This is in line with a recommendation
in Ref. [9]. The resulting covariance matrix is positive
definite (even numerically).

2. URR parameters

Due to format limitations, covariances for the URR
parameters can only be given for the mean URR param-
eters. Therefore, the mean URR parameters with respect
to energy are computed using the trapezoid integration
rule for each random set of ND (in which the URR param-
eters originate from the different TALYS runs). Then,
the sample covariance matrix for these mean parameters
is computed and stored into MF=32.

3. Other covariance information

The other covariance information is copied from
TENDL-2015. This data has its origin in the same dis-
tribution of TALYS parameters, but the correlation be-
tween different parts of the data is lost; this is, however,
impossible to avoid due to format limitations. Moving
from random files to one file with covariances, the cor-
relation between URR parameters and cross sections is
also lost, as well as higher moments of the distribution
and structure on a finer scale than the group structure.

C. Representing the mean cross sections with
resonance parameters and background cross sections

In each of the random ENDF files, the (n,tot), (n,el)
and (n,γ) cross sections for E < 38.9 keV are represented
entirely by resonance parameters (while (n,α) and (n,p)
are represented by pointwise data). When condensing
the random files to one file with covariances, the central
cross section values should be the expected values of the
respective cross sections. At the same time, it is desir-
able to represent the data using resonance parameters, as
these can be used for computing self-shielding factors by
some codes. However, the mean values of the resonance
parameters will not in general reproduce the mean values
of the cross sections. In particular, this becomes a prob-
lem for parameters with very large uncertainties, e.g.,
resonances positioned with a random ladder. Moreover,
some of the resonances have sampled quantum numbers,
which cannot be represented adequately by mean reso-
nance parameters.

This dilemma can be reasonably well solved by giving
the mean parameters for the resonances which are com-
pletely reported (in MF=2), combined with a correcting
background cross section (in MF=3) which accounts for
the resonances with sampled positions or quantum num-
bers, as well as the deviation between the mean of the
cross sections and the cross sections using the mean pa-
rameters. That is, the background cross section ςbg is
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FIG. 8: (Color online) The geometry used in the MCNP
model.

TABLE VI: The elemental composition used for the stainless
steel.

Fe Cr Ni Mn
Mass % 69.5 19 9.5 2

defined by

ςbg(E) = ς̄(E)− ςp̄complete
(E) , (16)

where ς̄(E) is the mean cross section and ςp̄complete
(E)

is the cross section reconstructed from the mean of the
completely reported parameters.

VI. USING THE RANDOM FILES FOR HELIUM
PRODUCTION IN A THERMAL SPECTRUM

A. The model

To test the random ND files produced in Sec. IIID, and
to get an indication on how the simulated distribution
of the thermal cross sections affects the production of
helium gas in a thermal reactor, the random files are used
in a simple MCNP6 [33] model.

The model consists of a “pancake-shaped” cylinder of
stainless steel, with height (thickness) 1 cm and a radius
of 1 m, as illustrated in Fig. 8. The elemental stainless
steel composition is specified in Table VI. On one side of
the cylinder (the plane z = 0 in Fig. 8), there is a surface
source5 with neutrons from a “typical” spectrum at 1/4
of the thickness of the pressure vessel, from Ref. [34]. In
each run, 107 neutrons are simulated.

5 The distribution of the direction of the surface source is the de-
fault of MCNP 6, i.e., a cosine distribution.

TABLE VII: The isotopic nickel compositions (mass %) used
for natural nickel and modified nickel (representing the 59Ni
peak), respectively.

58Ni 59Ni 60Ni 61Ni 62Ni 64Ni
Natural 68.1 - 26.2 1.14 3.63 0.926
Modified 57.8 3.06 32.1 1.39 4.45 1.13

The model is run once with natural nickel, and then n
times (once for each random file) with the nickel content
modified according to Table VII, where the 58Ni and 59Ni
values approximately correspond to the values in the 59Ni
peak in Ref. [3]. The distribution of the (n,α) reaction
rate with the modified nickel is compared to the value
obtained for the natural nickel. Note that other nuclides
and elements than 59Ni can contribute to this reaction
rate.

The random ENDF files are processed into ACE files6

using NJOY-99.336 and a temperature of 293 K. For
other nuclides than 59Ni, data from ENDF/B.VII.1 for
293 K is used.

B. Results

Figure Fig. 9 shows the distribution (using the 59Ni
random files) for the ratio of the (n,α) reaction rate using
modified nickel over the (n,α) reaction rate using natu-
ral nickel. In other words, the figure shows the distri-
bution for how much the (n,α) rate increases with the
59Ni-containing nickel compared to natural nickel. The
figure also shows the PDF of a normal distribution with
the same mean and standard deviation. The expected
value is estimated to 5.19(2), and the standard devia-
tion due to ND uncertainty is estimated to 0.28(1), or
5.4(2)%.7 Thus, we expect more than a five-fold increase
of the (n,α) rate at the 59Ni-peak compared to natural
nickel, but it may also be up to six-fold.

One may note that the relative uncertainty of the (n,α)
reaction rate is slightly less than that of the thermal (n,α)
cross section, which is 5.6(2)%. This may be surprising
since the relative (n,α) uncertainty is greater for higher
energies and the energy-energy correlations are mostly
positive. However, only about 4/5 of the (n,α) reactions
are in 59Ni (the increase is approximately five-fold; the
rest is in other nuclides for fast neutrons). Thus, the rel-
ative uncertainty of 5.2(2)% corresponds to a somewhat
larger uncertainty relative to the (n,α) reaction rate in
59Ni only.

6 File format used by MCNP, ACE stands for “A Compact ENDF”.
7 The statistical uncertainty from the Monte Carlo code is esti-
mated to 0.22%, so even if this is taken into account as described
in Refs. [23, 35], it does not make any practical difference for the
results.
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FIG. 9: (Color online) Observed distribution for the ratio
of the (n,α) rate for modified nickel (containing 59Ni) and
natural nickel.

VII. CONCLUSIONS

59Ni has been evaluated, including uncertainties, using
a novel approach to nuclear data evaluation. This com-
bines the sampling of errors in thermal cross section ex-
periments with resonance parameters and nuclear physics
models as implemented in TALYS.

In particular, the thermal (n,α), (n,p), (n,γ) and
(n,tot) cross sections have been carefully evaluated. The
random and different systematic errors of the experiments
have been sampled and combined with “physical” con-
straints, e.g., that the (n,el) cross section must be non-
negative. In this way, a new estimate for the joint distri-
bution of the thermal cross sections has been obtained,
including expected values and standard deviations as well
as correlations between the different cross sections. The
expected values and standard deviations differ from, but
are consistent with, the values quoted in Mughabghab
[2] and the evaluation contained in JEFF 2.2-3.2 (which
is copied into ENDF/B-VII.1). In particular, the (n,α)
cross section is estimated to (12.73(4)± 0.71(3)) b, com-
pared to (12.3± 0.6) b in the work of Mughabghab, and
13.5 b which is found in JEFF.

The obtained distribution for the thermal cross sec-
tions have been combined with resonance parameters,
and with TALYS 1.8 results using the parameter distri-
bution of TENDL-2015. The parameters of the bound
resonances have been adjusted to match the distribution
of the thermal cross sections. The procedure yields cor-
relations within, and between, the different parts which
reflect how the evaluation is done. The resulting ND is
stored as 300 random ENDF files, but also condensed into
one ENDF file with covariance information.

The random ENDF files have been processed into ACE
files and then used to propagate the nuclear data uncer-
tainties of 59Ni to a simple application: by using MCNP6,

the (n,α) rate in stainless steel in a spectrum in the pres-
sure vessel of a light water reactor is studied. The in-
crease of the (n,α) rate due to 59Ni at a certain time
in the reactor vessel compared to fresh stainless steel is
approximately five-fold, with an uncertainty due to 59Ni
data of 5.2(2)%.

It may finally be mentioned that even though this work
considers 59Ni, there is no hinder for the methodology to
be applied to other nuclides, as well.
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APPENDIX A: ANALYSIS OF THERMAL CROSS
SECTION EXPERIMENTS

Based on Sec. IIA, the available experiments are ana-
lyzed as detailed below, experiment by experiment. The
resulting uncertainty components are summarized in Ta-
ble III, and the difference between the original and eval-
uated experimental information is visualized in Fig. 2.

1. Eiland/Kirouac, 1974 [13]

Measured (n,α0), i.e., (n,α) leaving the recoil nuclide in
its ground state, in a thermal spectrum from a graphite-
moderated neutron-beryllium source detected with par-
ticle track detectors. The experiment actually consists
of two sub-experiments; the major differences are 59Ni
enrichment and detector efficiency (determined using an
americium source).

Both sub-experiments consisted of six measurements,
and the standard deviation of each set was used as an
estimate of the uncertainty from “all sources of random
error”, giving ςth. = (13.5±1.8) b and ςth. = (13.7±0.6) b
for sub-experiment 1 and 2, respectively. The flux was
determined using activation of gold via the 197Au(n,γ)
reaction. This determination was estimated to have
a 3.6% systematic uncertainty. The americium source
strength used to determine the detector efficiency was
estimated to have an uncertainty of 2.5% from statis-
tics. Using these systematic uncertainties (assuming all
other uncertainties are random) and taking the weighted
average of the two sub-experiments, they quote ςth. =
(13.7± 0.6 (random) ± 0.6 (systematic) ) b.
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In practice, the second sub-experiment and its estimate
of random uncertainty dominate completely, and there-
fore only this sub-experiment is analyzed further. For
each of the six measurements, a new estimate of the de-
tector efficiency and the background (as we interpret it)
was performed. Three different targets (and estimates
of their thickness and density) were used (two measure-
ments with each target). Therefore, uncertainties in all
constituents of Eq. (1) are to some degree accounted for.
There are however several problems with this estimate:

1. The sample size is small, so the random uncertainty
of the uncertainty is large

2. Only three different targets were used, increasing
the problem of the small sample size

3. The statistical precision varies (the number of
counted tracks varies between 1500 and 4100), so
the different measurements cannot be said to come
from identically distributed random variables

4. Only two systematic contributions are taken into
account – there may be a systematic error in the
thickness and density of the Ni target (same type
of thickness measurement, same origin of enriched
Ni) and also other systematic errors in the determi-
nation of the detector efficiency.

The first item is resolved by scaling the uncertainty with
the standard deviation of a t-distributed random variable
with 5 = 6 − 1 degrees of freedom, i.e.,

√
5/3 ≈ 1.29

[36], since the t-distribution includes the uncertainty of
the sample variance as an estimator of the true variance
(also, the t-distribution with 5 degrees of freedom is used
when simulating the experiment, see Sec. II B).

The second item is trickier; one can note that a t-
distributed random variable with 2 = 3 − 1 degrees of
freedom has an infinite variance; therefore, it is unsat-
isfactory to include this uncertainty in the random un-
certainty and we add a systematic uncertainty for N ac-
cording to Table I, also handling a part of the fourth item
above.

Since the solution for the second item can be considered
somewhat conservative, and since the counting statistics
is dominated by other sources of random variance (at
most 1/1500 = (2.6%)2 compared to (1.29 · 0.7/13.7)2 =
(6.6%)2), the third item is ignored.

The fourth item was partially resolved already, but we
add another systematic uncertainty of 2% in quadrature
to the detector efficiency. This corresponds to the un-
certainty of ε′/ε in Table I, which is reasonable since the
detector efficiency is measured for one reaction and used
for another. The total systematic detector efficiency un-
certainty becomes 3.2%.

Also, the reported standard deviation for the second
sub-experiment (0.6 b) does not agree with the sample
standard deviation of the reported measurement results
(probably, the authors used the commonly used biased
variance estimator 1

m

∑m
i=1(xi − x̄)2 instead of

1
m−1

∑m
i=1(xi − x̄)2). We instead use the value 0.695 b

which is computed using the unbiased variance estimator.
To summarize, the total uncertainty excluding the flux

(and the normalization) is 8.83%, resulting in an increase
by a factor of 1.63 compared to the estimate by Eiland
and Kirouac. Thus, we adjust the flux uncertainty to
1.63 · 3.6% = 5.85%, as discussed in Sec. II A.

We also assume that the flux determination used a
value of 98.8 b for 197Au(n,γ) (used in Ref. [12] the year
after). This is used to renormalize the cross sections to
current standards, as described in Sec. IIA.

Eiland and Kirouac also claim that (n,α0) makes up
the whole (n,α) cross section for thermal energies and
that (n,α1) begins to contribute to about 1% of the cross
section above 1 keV, citing a previous article by Kirouac
[37], where Hauser-Feshbach formalism was used to es-
timate the (n,α) cross section. However, the branching
ratio into different excited states is not mentioned in the
actual reference.

2. Werner/Santry, 1975 [12]

Measured (n,α0) with 0.0551 eV neutrons from a triple
axis crystal spectrometer, detected by a silicon surface-
barrier detector. Reports ς(0.0551 eV) = (12.0 ± 1.2) b,
and, assuming a 1/v dependence of the cross section,
ςth. = ς(0.0253 eV) = (18.0±1.6) b. It is not entirely clear
how the authors concluded ς(0.0253 eV) = (18.0± 1.6) b,

since 12.0 b ·√0.0551/0.0253 = 17.7 b.
The quoted uncertainty is “at 90% probability”, and

due to 7.5% counting statistics and “about 3% each” for
the flux estimate, the detector efficiency and the number
of 59Ni atoms in the target. Assuming independence of
the four components gives a total relative uncertainty of√
7.52 + 3 · 32 % = 9.1% which is rounded off to 1.6 b

for ςth. = 18.0 b (how 1.2 b uncertainty is obtained for
12.0 b is unclear). Assuming a normal distribution to
translate “at 90% probability” to one standard deviation
uncertainty gives ςth. = (18.0± 1.0) b
The result is so inconsistent with other results that

we assume that an unknown systematic error has had a
significant effect, and we disregard this experiment from
the analysis.

3. McDonald/Sjöstrand, 1975 [15] (corrected by
Ashgar et al., 1977 [16])

Measured (n,α0) (also reported (n,p0) as a spin-off)
using neutron energies of 0.0290, 0.0345 and 0.0421 eV
from a double crystal monochromator, using a silicon
surface-barrier detector. The measurement was per-
formed relative to the 6Li(n,t) by using both a 59Ni en-
riched Ni-target (produced in R2 at Studsvik) and a LiF-
target. The ratio of the 59Ni(n,α) cross section to the
6Li(n,t) cross section was found to be (2.37±0.07) ·10−2,
(2.36± 0.04) · 10−2 and (2.37± 0.08) · 10−2, respectively,
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for the three energies. The quoted uncertainties should
include the counting statistics but, according to the ex-
perimenters, also the uncertainties arising from variations
in the flux, in small alternations in the target position,
and electronics, since the procedure was repeated “sev-
eral times” for each energy, but it is also noted that the
“largest contribution to the [random] uncertainty arises
from [counting statistics]”. The weighted average of the
ratios (assuming independence between these parts of the
uncertainty) is (2.364 ± 0.032) · 10−2. On top of the
“random” uncertainties quoted for the ratios, the authors
quote 6%, 3% and 2% for the LiF and Ni target thick-
nesses and the 59Ni density, respectively.
Assuming 1/v-dependence in the considered energy

range for both 59Ni(n,α) and 6Li(n,t), the authors de-
duce ςth. = 22.2± 1.7 b using a thermal cross section for
6Li(n,t) of 940 b. However, Ashgar et al. [16] (Sjöstrand
was one of the co-authors) discovered that the 6Li con-
tent of the LiF targets used was “0.5± 0.04” times what
McDonald and Sjöstrand thought. Since this factor is not
explained thoroughly in Ref. [16], 0.5± 0.1 is used in this
work (20% uncertainty).

Random uncertainties are in a sense treated by repeat-
ing the measurement “several” times, but it is not spec-
ified what “several” means (cf. A1), and the authors
noted that the quoted random uncertainty was dominated
by counting statistics. Therefore, we assume that the ran-
dom uncertainty only covers counting statistics and use
the uncertainties in Table I for the background, ε′/ε and
φ′/φ.

The derivation of the reported (n,p0) cross section is
less well described, but reported as (4± 1) b. We use the
same correction as above, and the same relative uncer-
tainties except for the background, since it was pointed
out in Ref. [16] that it is likely that a contribution from
10B(n,α) due to a boron impurity is included in the value
quoted for (n,p0). Therefore, we let the uncertainty of
the background equal 50%.

4. Jurney, 1975

Two values for (n,γ) are reported in EXFOR, namely,
(53±4) b and (51±8) b. These values are so much in dis-
agreement with other experiments (both (n,γ) and com-
binations of (n,tot) and the other channels) such that we
completely disregard this experiment. The original pub-
lication is not found by the authors of this paper.

5. Harvey, 1975/1976

A series of measurements during 1975 and 1976. The
best documentation found is an ORNL progress report
from 1976 [32]. In the related EXFOR entries (13875 and
10680), there are several references to “private commu-
nication” and one to “Review of ORNL measurements,
1978” (which we did not manage to find). Because of the

unwieldy documentation, it is chosen to use the EXFOR
entry from 1976 (10680) to avoid any double-counting of
experiments.

The measurements cover thermal cross sections (as well
as resonance widths) for (n,tot), (n,γ), (n,α0) and (n,p0).
The (n,α0) and (n,p0) cross section measurements use a
thermal spectrum from photons impinging on a water-
moderated tantalum target and a diffused-junction sili-
con detector. The (n,γ) and (n,tot) cross sections were
obtained with better resolved energies and a total energy
detector and a 6Li glass detector, respectively.

Common for all the measurements is that one uncer-
tainty estimate is given per point, but that the sources of
the uncertainties are not given in the found documenta-
tion. Therefore, we assume that the quoted uncertainties
are random and add systematic uncertainties according
to Table I. We let the systematic uncertainties correlate
fully for N and N ′ between all reactions, since it is likely
that the same target is used. The only mentioning of a
monitor cross section is the 6Li(n,t) cross section, which
we use for renormalization (assuming that 940 b or 941 b
was used as in Ref. [15] and Ref. [16], respectively; the two
choices are sampled with equal probability in Sec. III).
We also let the uncertainty of the background equal 50%
for the (n,p0) cross section due to the possible problem
of a boron impurity just as for the McDonald/Sjöstrand
experiment.

For (n,α0), (n,p0) and (n,γ), values of (11.4 ± 0.8) b,
(1.43 ± 0.13) b and (78 ± 8) b are quoted, respectively.
The (n,tot) cross section is reported for several energies,
however. For low energies, it is assumed that the total
cross section follows

ςtot(E) = A+
B√
E
, (A1)

where A and B are constants, i.e., the sum of a constant
component (elastic) plus a component following a 1/

√
E-

behavior (non-elastic). Assuming that the reported un-
certainty is random uncertainty, and performing a gen-
eralized least squares fit for the expression above (a.k.a.
weighted least squares in this special case) for the data
for E ≤ 0.13 eV gives ςth.,tot = 92.28± 0.58 b. The limit
0.13 eV was chosen because an investigation of the (n,γ)
cross section in a preliminary result within this work
agreed with a 1/

√
E behavior within 0.1% below this

energy. After the fit, systematic uncertainties are added
according to the above.

6. Ashgar et al., 1977 [16]

This experiment is not reported to EXFOR. The
(n,α0), (n,α1), (n,p0) and the (n,p1) cross sections were
measured using a thermal spectrum from the “long
curved neutron guide” of the Grenoble high flux reactor
and a gold-silicon surface barrier detector. The 59Ni tar-
get is the same as in the McDonald/Sjöstrand experiment
briefly described in A3. The cross section was measured
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relative to the 6Li(n,t) cross section, assumed to be 941 b
by the authors.

The authors reported (13.1± 1.1) b, (0.188± 0.016) b,
(1.34±0.18) b and ≤ 0.30 b for (n,α0), (n,α1), (n,p0) and
(n,p1), respectively. The quoted uncertainties include
counting statistics, nickel and lithium target thicknesses
and the instability of the neutron beam added quadrati-
cally, but their contributions are not given separately ex-
cept for the Ni target thickness (3%). The authors claim
that the (n,α0) peak is well separated from the peak from
10B(n,α) mentioned in Appendix A 3.

Since the target is the same as in Appendix A3, we also
add a 2% uncertainty due to the 59Ni density, and both
this uncertainty and the Ni target thickness uncertainty
are assumed to be fully correlated to the same uncer-
tainties in the McDonald/Sjöstrand experiment. Since
nothing is mentioned regarding detector efficiency and
background, the default uncertainties of Table I are used
for ε′/ε and the background. To estimate the correla-
tion between the different reactions properly, the default
uncertainty for the Li target thickness is subtracted (in
quadrature) from the quoted uncertainty and added sep-
arately.

The upper limit for (n,p1) is treated by assuming an
expected value of a third of this limit, i.e., 0.10 b and a
100% uncertainty. Using the sampling methodology in
this work, this results in an exponential distribution with
expected value 0.10 b. Because of this rough treatment
(and the small value giving it minor importance), the
uncertainty is assumed uncorrelated to all others.

7. Raman et al., 2004 [17]

Measured the (n,γ) cross section using neutrons in the
thermal column of the Los Alamos Omega West Reac-
tor. The value is normalized to the 58Ni(n,γ) cross sec-
tion value obtained in the same experiment, in turn nor-
malized to the 1H(n,γ) cross section (using a value of
332.6mb).

The authors quote 73.7± 1.8 b for the (n,γ) cross sec-
tion, and claim that the quoted uncertainty “includes
contributions from all sources including the normaliza-
tion [by 58Ni(n,γ)]”. However, what these contributions
are, is not easily found from the text. The uncertainties
of N and N ′ are quoted, implying relative uncertainties
of 0.4/44.3 ≈ 1% and 0.4/37.9 ≈ 1%, respectively. Also,
the uncertainty of the monitor cross section (58Ni(n,γ)) is
given, implying a relative uncertainty of 0.05/4.13 ≈ 1%.
Summing up these explicitly stated uncertainties, one
ends up with 1.4 b. The other constituents of Eq. (3)
are assigned uncertainties according to Table I.

Similarly to the reasoning for the flux, we assume that
the quoted experimental uncertainty for the 58Ni(n,γ)
cross section is as underestimated as the uncertainty of
the considered uncertainty (disregarding the normaliza-
tion). Summing all other uncertainties in quadrature
gives us a total uncertainty 3.21 times as large as the

quoted uncertainty. Replacing the normalization uncer-
tainty 0.05/4.13 included in the quoted uncertainty with
3.21 · 0.05/4.13 gives that the combined uncertainty from
the originally “included” contributions is 4.43%.

APPENDIX B: USING BAYES’ THEOREM TO
MOTIVATE REDRAWING UNPHYSICAL

OBSERVATIONS

The experimental information gives us a first estimate
of the distribution for the random vector ς =
(ς(n,α), ς(n,p), ς(n,γ), ς(n,el))T, where (n,tot) is left out be-
cause Eq. (6) makes it obsolete. The interpretation of this
random vector is that its probability density describes our
knowledge of what the true cross sections are.

Let A be the set of all ς that are physically possible.
Bayes’ theorem [38] can be written

fς |ς∈A(ς) =
P (ς ∈ A|ς = ς)fς (ς)∫

Rm P (ς ∈ A|ς = ς)fς (ς) dς
=

=

⎧⎪⎨
⎪⎩

fς (ς)∫
A fς (ς) dς

if ς ∈ A

0 if ς /∈ A,

(B1)

where fς (ς) is the probability density function (PDF) for
ς using only the experimental information, fς |ς∈A(ς) is
the PDF for ς given that ς ∈ A, i.e., given that the cross
sections must be physically possible, and P (ς ∈ A|ς = ς)
is the probability that ς ∈ A given that ς = ς. Clearly,
this probability must be one if ς ∈ A, and the probability
must be zero if ς /∈ A.

Assuming that the simulations described above are a
reproduction of the experimental knowledge, the simula-
tions yield random observations from fς (ς). To obtain
observations from fς |ς∈A(ς) instead, we can redraw from
fς (ς) until the criterion ς ∈ A is fulfilled, since this will
make the probability density vanish outside A and only
renormalize it (such that it remains a probability density
at all) in A.

APPENDIX C: SAMPLING MISSING
INFORMATION FOR INCOMPLETELY
REPORTED RESOLVED RESONANCE

PARAMETERS

As can be seen in Table IV, Harvey’s resonance param-
eter data is incomplete in some cases; it is not sufficient
to reconstruct cross sections from. For these resonances,
the missing information is sampled, and the distributions
to sample from are determined using the average level
spacings and resonance widths (URR parameters) pro-
vided by TALYS. Again, the same TALYS parameters as
for the random TENDL-2015 files are used.

We have 5 cases to consider:

1. Γγ ,Γtot,Γα and Γp are given (two resonances)
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2. Γγ and Γtot are given (two resonances)

3. Γγ is given (two resonances)

4. ΓnΓα

Γtot
and

ΓnΓp

Γtot
are given (one resonance)

5.
ΓnΓp

Γtot
is given (one resonance)

Uncertainty estimates are given in all these cases, and
before completing the data, the widths that are reported
are sampled for each random set of ND to be produced,
as in Sec. IIIA 1.

Note that for all the 8 incompletely measured reso-
nances, Γn, � and J are missing. In case 1, we implicitly
have Γn, but the Γtot,Γγ ,Γα and Γp are sampled and Γn

is computed by subtracting the partial widths from the
total for each set of random ND.

First, � and J are determined. It is assumed that � ∈
{0, 1} for all levels. Within this restriction, the likelihood
for each possible (�, J) is computed, using the widths that
are reported. This is done given the average level spacing
and resonance widths as well as the distributions for the
resonance energies and widths assumed in Sec. III A 2.
Mathematically, we make use of Bayes’ theorem with a
constant prior, giving

P (�, J |Γ = Γ, H = h) =
fΓ|(�,J)(Γ)fH|(�,J)(h)∑

(�′,J ′) fΓ|(�′,J ′)(Γ)fH|(�′,J ′)(h)
,

(C1)

where

• Γ is the vector of the partial resonance widths that
are reported (seen as a random vector).

• Γ is the actual observation of Γ (the reported
widths).

• H is the random variable describing the distance to
the closest reported resonance with this (�, J). The
quantum numbers (�, J) are determined in order of
increasing energy, and H is affected by resonances
with previously determined (�, J). For resonances
located in between completely reported resonances,
the usage of the closest resonance to define H is
a simplification; resonances on both sides will in
reality affect the Wigner distribution below.

• h is the observation of H.

• P (�, J |Γ = Γ, H = h) is the probability of observ-
ing the quantum numbers (�, J), given the reported
widths Γ and the distance to the closest resonance
(with the considered (�, J)) h (i.e., what we want).

• fΓ|(�,J)(Γ) is the probability density for Γ given
(�, J), evaluated at Γ. The PDF is taken to be prod-
uct of the PDFs of the individual partial widths,
i.e., the χ2-distribution with DOFs as assumed in
Sec. IIIA 2, and with expected values determined
by the average partial widths given by TALYS for

the particular random set of parameters for the
(�, J) under consideration.

• fH|(�,J)(h) is the probability density for H given
(�, J), evaluated at h. The PDF is based on the
Wigner distribution using the average level spac-
ing D�,J(Eλ) from TALYS. However, there is a risk
that there is a closer resonance with the considered
(�, J) which is not observed, i.e., that the observed
resonance is an observation of the sum of two or
more Wigner distributed variables. This is treated
using the law of total probability, giving that

fH|(�,J)(h) =
∞∑
j=0

fH|(�,J),Aj
(h)P (Aj), (C2)

where Aj is the event that j resonances are between
this resonance and the closest reported resonance
(all with the considered (�, J)) and P (Aj) is the
probability for Aj . Assuming that the probability
for a resonance to be missing is p, one gets P (Aj) =
(1− p)pj . For each random set of ND, p is set to

p =
〈nR〉 − nR,H

〈nR〉 , (C3)

where 〈nR〉 is the expected number of resonances
in the range 0 < E ≤ 17.2 keV according to the
average level spacings provided by TALYS (in this
particular random run), and nR,H = 15 is the num-
ber of resonances reported by Harvey in this range
(many without reported (�, J)). This gives p cen-
tered about 36%.

Now, H|Aj can be seen as the sum of j+1 indepen-
dent Wigner distributed random variables. Because
this is a rather small detail in the study, the coarse
assumption that the central limit theorem can be
applied for j > 0 is made. This gives that for j > 0,
fH|(�,J),Aj

(h) follows a normal distribution with ex-

pected value (j + 1)D�,J(Eλ) and standard devia-
tion

√
j + 1D�,J(Eλ)/2. At any point, the infinite

series converges quickly due to the factor pj . Thus,

fH|(�,J)(h) ≈ 1− p

1− pK
fH|(�,J),A0

(h)+

1− p

1− pK

K∑
j=1

pjϕ(h; (j + 1)D�,J(Eλ),
√
j + 1D�,J/2),

(C4)

where ϕ(h;μ, σ) denotes the PDF for the normal
distribution with expected value μ and standard de-
viation σ. The upper summation limit K is chosen
such that pK < 0.001.

The resulting relative frequencies for the different pos-
sible (�, J) are shown in Table VIII. The samples are
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TABLE VIII: The observed relative frequencies of (�, J) re-
sulting from the sampling used when values are not provided
by Harvey.

Eλ (Harvey) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (1, 3)
6230.0 1.0(6) 55(3) 4(1) 23(2) 17(2) 0
6360.0 4(1) 39(3) 3(1) 25(2) 29(3) 0
9227.0 3(1) 26(3) 4(1) 3(1) 64(3) 0
9850.0 3(1) 33(3) 2.0(8) 10(2) 52(3) 0
11100.0 1.3(7) 44(3) 0 0 54(3) 0
11530.0 2.3(9) 47(3) .3(3) 2.7(9) 48(3) 0
14400.0 22(2) 27(3) 3(1) 16(2) 31(3) 0
17200.0 10(2) 35(3) 2.7(9) 20(2) 32(3) 0

rather spread out, but with generally greater frequencies
for (�, J) = (0, 2) and (�, J) = (1, 2), while (�, J) = (1, 0)
and there are no observations of (�, J) = (1, 3). The two
latter combinations are not reported by Harvey for any
of the resonances, which can reduce fH|(�,J)(h). A sub-
stantially greater level spacing for (�, J) = (1, 0) than for
(�, J) = (1, 3) can explain while the former occurs and
not the latter.

With (�, J) determined, the missing widths are deter-
mined using the reported information combined with the
average widths from the random TALYS runs. The de-
tails differ between the 5 different cases described above.
Case 1 is discussed earlier. For case 3, the missing widths
are sampled directly from the random TALYS results as
in Sec. III A 2. In case 2, the proportion of the missing
widths is sampled from the TALYS results, but normal-
ized such that that Γtot = Γn + Γγ + Γα + Γp.
Cases 4 and 5 are a bit more complicated. For conve-

nience, a and b are defined as

a =
ΓnΓα

Γtot
, (C5)

and

b =
ΓnΓp

Γtot
, (C6)

respectively. In case 5, we can evaluate Γtot and rearrange
the latter equation to obtain

Γp =
b(Γn + Γγ + Γα)

Γn − b
. (C7)

The widths Γn,Γγ and Γα are then sampled as in Sec.
IIIA 2 and b is sampled from the experimental informa-
tion as in Sec. III A 1. Note, however, that ΓnΓtot > ΓnΓp

giving Γn > b. Therefore, the sampling is repeated until
this condition is fulfilled, once again motivated by Eq.
(B1). For most random sets, no repetition is necessary.

In case 4, Eq. (C5) can be divided by Eq. (C6) to yield

Γα =
aΓp

b
. (C8)

Inserting this into Eq. (C7) gives

Γp =
b(Γn + Γγ)

Γn − a− b
. (C9)

This time, only Γn and Γγ are sampled as in Sec. III A 2
while a and b are sampled from the experimental infor-
mation. Γp is then back-substituted into Eq. (C8) to
yield Γα. In this case, the sampling is repeated (if neces-
sary) until Γn > a + b since this condition is implied by
ΓnΓtot > Γn(Γα + Γp).
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