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INTRODUCTION  

Nuclear engineering field has some of the most 
stringent requirements for validation, heavily dependent on 
a comprehensive experimental campaign and guided by 
expert opinion in order to ensure proper coverage of the 
application domain conditions. With the increasing cost of 
experiments and the latest leaps in computer power, a new 
initiative has emerged promoting the use of high fidelity 
modeling and simulation to empower the validation process. 
The goal is to optimally combine the experimental and 
analysis results in a manner that reduces experts’ 
subjectivity and minimize and preferably optimize the type 
and number of needed experiments.  

Earlier work has introduced the concept of physics-
guided validation as a science-driven approach to address 
some of the weaknesses of existing validation [1]. The 
developed method is denoted as physics-guided coverage 
mapping (PCM), which allows for mapping of experimental 
biases directly to the application domain. This summary 
applies the PCM methodology to the validation of MCNP to 
the simulation of the KUCA cores (Kyoto University 
Critical Assembly). It is assumed that only high-enriched 
KUCA core experimental data are available. PCM has two 
key steps, one employing a comprehensive uncertainty 
analysis to create a joint PDF that is used to characterize the 
applicability of the available experimental data to the 
prediction of low-enriched core behavior. This step will be 
done via the Total Monte Carlo (TMC) method [2]. The 
second step is predictive; it employs the constructed PDF to 
make predictions about the conditions of interest. This step 
will be completed using a nonparametric regression 
approach, denoted by the Alternating Conditional 
Estimation (ACE) [3].  
 
BACKGROUND 

The primary challenge in any validation is to develop 
strong arguments to defend the use of simulation over the 
domain of application for which no or limited experimental 
data exist. The application domain refers to all the 
conditions/configurations that are envisaged for system 
operation, which may not be duplicated by experiments. 
This is because it could be either expensive or practically 
infeasible to conduct experiments for every condition 
expected during operation. To address that, a lot of 
experimental strategies are devised to provide credibility to 
model predictions for the wide range of conditions that form 

the application domain. This process is integral to any 
model validation exercise. Central to various methods for 
the model validation is the concept of scaling and mapping, 
that is how to translate the measured experimental biases 
into biases for the application conditions where no 
experimental values exist.  

Taking the helicopter view, the state-of-the-art in model 
validation in the nuclear engineering community may be 
categorized into two general approaches. The first one, the 
calibration-based approach commences with the 
construction of detailed models for both the experimental 
and application domains and employs sophisticated 
mathematical theories to explain the discrepancy between 
measured and predicted responses via the adjustment of 
model parameters, typically physics parameters such as 
nuclear cross-sections and thermal-hydraulic parameters [4].  
The adjusted parameters are then employed to predict the 
behavior of the system in the application domain. This 
approach has adopted many names according to the 
specifics of the mathematical theory employed, such as 
Bayesian calibration, generalized least-squares adjustment, 
or maximum likelihood estimation, See Refs [5-7] for 
examples. For a good review of calibration methods, see the 
seminal paper by Kennedy and O’Hagan [8].  

The second approach is based on the concept of 
similarity, which refers to a quantitative metric that can be 
used to judge whether experiments are similar to the 
application conditions. This metric is a scalar quantity 
defined over a range, typically determined by experts. For 
example, for fluids calculations, the celebrated Reynolds 
number, representing a dimensionless ratio of inertial and 
viscous forces, is used to differentiate between laminar and 
turbulent flow and transition there between. In the 
neutronics’ community, another metric is used which runs 
between zero and one, with one indicating perfect similarity 
and zero no similarity. The premise of this approach is that 
if high similarity can be established then the experimental 
biases are assumed to be representative of the biases to be 
expected in the application conditions. The biases are 
typically functionalized in terms of trending parameters, 
such as fuel-to-moderator ratio, fuel enrichment, etc., for 
neutronics, and wall roughness, flowrate, friction factors, 
etc., for fluid calculations, and the fit is used to predict the 
bias for the given application conditions [9]. When the 
similarity is low, additional uncertainties, referred to as 
scale-distortion uncertainties, are typically added on the 



mapped biases to account for the dissimilarities between the 
experimental and application conditions [10]. The 
determination of the scale-distortion uncertainties is largely 
a subjective process as it is guided by expert-based analysis 
of the entire body of available experiments and analysis 
results to come up with appropriate uncertainties. The scale-
distortion uncertainties are considered adequate when a 
group of independent experts agree to their validity.  

For both of these approaches, if the mapped biases have 
unacceptably high uncertainties, new experiments are added, 
until an acceptable level of uncertainty is reached for the 
domain of application conditions. Both of these approaches 
suffer from unique challenges that are still considered 
unresolved. For detailed discussion, see an earlier 
publication [11].  

 
DESCRIPTION OF THE ACTUAL WORK  

Central to this study is the use of PCM.  A brief review 
is given herein. Let the physics model describing the 
experimental conditions and application domain be given by 
respectively 

   ( )exp exp ,y f x u=                             (1)                                        

            ( ),app appy f x v=                              (2)                                          
where x are basic physics parameters, such as cross sections, 
which the two domains share the same values;  u and v are 
control parameters that are unique to the experimental and 
application conditions,  such as the materials, geometry and 
the composition specifications; expy  are the experimental 

responses predicted by the model and appy are the responses 
of the application. Two responses can be of different types 
such as the flux, multiplication factor, and reaction rates.    

PCM attempts to find a direct mapping between the 
experimental and the application domains. The mapping is 
obtained by using a joint probability distribution function 
(PDF) generated by performing a comprehensive 
uncertainty analysis of both the experimental and 
application conditions. The PCM algorithm proceeds as 
follows [1]: 
1.   Generate N samples of x, u, v 
2.   Execute the forward models for M experiments and 

applications N times, each with its corresponding 
samples. Their responses can be denoted by ( )

exp
iy and 

( )i
appy respectively, where i =1, 2…M. Let the measured 

value for each experiment be defined by ( )
exp,msr

iy , 
where i =1, 2…M. 
These samples are used to construct an analytic joint 
PDF using kernel density estimation (KDE), see Ref. 
[10-11] for formal definition of KDE function. 

3.   Find a relationship between the response of the 
application ( )

exp
iy and the experiments ( )i

appy where i =1, 
2…M, and determine what the application response 

should be denoted by a vector projy . This variable is 

expected to be different from ( )i
appy since not all the 

application can be covered by the experiments.  
4.   Using the measured experimental biases as input to the 

relationship developed in 3 and the PDF in 2, determine 
the estimated application bias, denoted ,proj msry  

The relationship in step 3 can be determined parametrically 
using response surface methods (see earlier publication [1]) 
or non-parametrically which is attempted in the current 
work. Specifically, we utilize alternating conditional 
estimation (ACE) algorithm which attempts to find an 
optimal transformation of the measured responses that best 
correlates with the application response of interest.                                        

ACE was first introduced by Breiman and Friedman [3] 
for estimating the transformations of a response and a series 
of predictor variable in multiple regression that produce the 
maximum linear relationship between the transformed 
explanatory variables and transformed response variables. 
The optimal ACE transformations are solely derived from 
the given data and do not require a priori assumptions of any 
functional form for the response or predictor variables.  

The ACE regression model has the general form:  

1

( ) ( )
p

i i
i

y zθ α φ ε
=

= + +∑                        (3) 

where θ  is a function of the response variable, y and iφ  are 
functions of p predictors variables. Instead of estimating a 
linear function of a p-dimensional variable, the ACE 
attempts to uncover the non-linear feature by minimizing 
the unexplained variance of a linear relationship between the 
transformed response variable and the sum of the 
transformed predictor variables. See detailed discussion in 
[12-14].  In our implementation, we assume that there are p 
experimental responses, each representing one of the 
predictor variables in Eq. (3), and y represents the response 
in the application domain, where no experimental data exists. 
Following step #2 of the PCM algorithm, samples from the 
PDF are used to train the ACE model in Eq. (3): 

1

1

( )
p

ACE
proj i i

i

y zθ α φ ε−

=

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

∑  

where zi are sampled from the PCM-generated joint PDF. 
After training, the measured values for the responses are 
used to perform a prediction step as follows: 

1
,

1

( )
p

ACE msr
proj msr i i

i

y zθ α φ ε−

=

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

∑  

Returning back to Eqs. (1) and (2), the shared physical 
parameters x representing the common sources of 
uncertainties are the nuclear cross sections. The uncertainty 
analysis is completed using N=338 random samples of the 
nuclear data libraries, generated using the nuclear data 
uncertainty stochastic sampling method (NUSS) [2,15]. The 
NUSS is a new stochastic-sampling based tool which 
combines the efficiency of multi-group uncertainties and the 



transparency of point-wise energy nuclear data.  It employs 
perturbations to the point-wise nuclear data given in the 
ACE format using the multi-group nuclear data covariance. 
The specific ACE format can be directly transferred to 
MCNP for criticality safety and burnup calculations.  

The sampling of nuclear data in NUSS method follows 
the methodology by Wieselquist [16]. Group-wise 
perturbation factors as the ratio between the sampled and 
nominal group-wise nuclear data are employed to the point-
wise nuclear data in the ACE format. The NUSS module to 
modify the original ACE format separates the entire length 
of the nuclear data into G groups, which is the number of 
the energy groups in the given covariance library. The 
covariance files of ENDF/B-VII.1 are processed in 187 
groups and used to generate the random cross section groups. 
The following nuclear data can randomly be modified at 
once: v  (emitted neutron per fission), χ  at different neutron 
incident energy (prompt fission neutron spectra), and cross 
sections for (n, tot), (n, el), (n, inl), (n, 2n), (n, f) and (n, c). 
Only the isotopes of 235U and 238U are varied, which are the 
main sources of the uncertainties for k-eff calculations.  

 
NUMERICAL RESULTS 

A demonstrative numerical experiment employs the 
KUCA cores with high and low enriched uranium fuel pins, 
denoted by HEU and LEU, respectively. The HEU U-Al 
alloy-based core (93% uranium enrichment) is selected to 
represent the experiment and the application is the LEU U-
Al alloy with only 19.75% uranium enrichment. The 
number densities of these two fuels are shown in the table 1.  

 
Table 1. Number densities of HEU and LEU 

HEU U-Al LEU U-Al 
235U  1.50694E-03 235U  3.19061E-04 
238U  1.08560E-04 238U  1.29644E-03 
27 Al  5.56436E-02 27 Al  5.56436E-02 
Total 5.72591E-02 Total 5.72591E-02 

 
 Calculations are performed using MCNP6 with the 336 

NUSS-generated ACE libraries. The employed MCNP 
models are based on an earlier study [17], with the fuel 
assembly shown schematically in Fig. 1.  

 

 
Figure 1. The description of Fuel F  

 
The fuel assembly with U-Al alloy is filled in the middle 
with reflector polyethylene on both sides. And the fuel 
regions in the KUCA core are obtained by the stacking 
plates. The whole core configuration [17] for which 
numerical calculations have been performed is shown in Fig. 
2. The configuration of LEU is a little different from that of 
HEU. The additional fuel assemblies around the center of 
the core are required to make the low-enriched KUCA core 
critical.   

 

 

(a)   HEU configuration 



 

(b)   LEU configuration  
Figure 2. The KUCA core configuration 

“Source: Ref [17]” 
 

For this numerical experiment, both k-eff and the group 
flux (at location (K,15) and (H,19), denoted by points O and 
A, respectively) are used as representative responses in the 
experimental and application domains. PCM allows one 
explore all possible correlations between the responses in 
the experimental and application domain to allow for a 
quantitative approach by which the value of the experiment 
can be measured. For example, Fig. 3 shows the k-eff PCM-
generated joint PDF between the HEU and LEU (both axes 
are centered around their mean values), the standard 
correlation coefficient is calculated to be 0.961905. Figs. 4(a) 
and 4(b) show the correlations between the HEU and LEU 
for different energy ranges at the same spatial location, 
point O. Specifically, Fig. 4(a) shows the thermal-to-thermal 
flux correlations in the energy range (10-4 eV to 1eV), while 
Fig. 4(b) shows the fast correlations in the range (1eV to 
100MeV). The standard correlations calculated for the two 
cases are, respectively, 0.696862 and 0.852418.  

Spatial correlations can also be explored, see for 
example the joint PDF between the thermal fluxes at points 
O and A. The standard correlation coefficient for this case is 
0.708168. Comparison of these results may be used to judge 
the value of spatial and energy correlations in mapping 
biases between experimental and application domain.  

 

Figure 3. (HEU, LEU) k-eff joint PDF 

 

(a) Thermal group 

 
(b) Fast group 

Figure 4. (HEU, LEU) 2-group flux joint PDF  
 



 

Figure 5. (HEU, LEU) thermal flux joint PDF  
at position A and O 

 
The utility of the above PDFs is very intuitive as they 

directly relate the response of interest to the experimental 
response by taking into account the variability of both 
responses due to uncertainties, i.e., ( )exp , appp y y . Currently, 
we are only taking into account cross-section uncertainty. 
The idea however can be easily extended to account for 
other sources of uncertainties, such as modeling and 
numerical errors, and uncertainties resulting from 
technological parameters such as dimensions, composition, 
etc. With the experimental data available, in the form of a 
PDF ( )expp y , one can marginalize the joint PDF using the 
experimental data to calculate the PDF for the response of 
interest as follows: 

( ) ( ) ( )exp exp exp,app appp y p y y p y dy= ∫  

PCM can also allow one explore the value of using 
more refined models for the experiment and/or application. 
For example, one could explore the value of using more 
groups to analyze the flux variations. For illustration, a 53 
group model is used for both the LEU and HEU models. Fig. 
6 shows the peak group-to-peak group correlations in both 
the thermal and fast ranges for the HEU and LEU, with 
calculated standard correlation coefficients of, respectively, 
0.569956 and 0.718097. The results show that the 
correlations are decreased by about 10% from the values 
calculated in Fig. 4. The implication is that one can use 
these simple analysis results to judge the value of model 
investments without having to rely on complicated 
mathematical techniques. Further, more elaborate weighting 
approaches combining both spatial and energy-dependent 
fluxes can be devised to maximize correlations with the 
application response of interest.   

 
(a) Thermal group 

 
(b) Fast group 

Figure 6. (HEU, LEU) 2-group peak flux joint PDF  
 
The results shown so far are meant for illustration 

purposes only as they communicate to the analyst the value 
of each individual experimental value to the application 
response of interest. In reality, an analytic approach must be 
devised to combine all available experimental data to 
maximize inference of the response of interest. This 
manuscript demonstrates the use of the ACE algorithm to 
combine experimental data in a non-parametric approach. In 
this approach, each experimental response is treated as a 
predictor variable, and the algorithm attempts to find the 
best non-parametric relationship between the experimental 
responses and the application response of interest.  

Two ACE experiments are performed to find the 
possible relationship between LEU and HEU KUCA cores. 
The objective of both tests is to estimate the response in the 
application domain by all available experimental data.  The 
first test employs 53-group flux data for HEU at location O 
as the experimental data and the 2G thermal flux for LEU at 



the same location as the response. The second test attempts 
to describe the group-wise flux at certain position with the 
experimental group-wise flux data from other positions.  

Figure 7 shows the reconstructed error by the ACE 
transformation. The x-axis describes the absolute value of 
the fluxes, and the y-axis represents the log-10 of the error 
in relative units. Both plots show that the relative errors are 
uniform regardless of the nominal value of the flux.  

 

(a)   Test 1  

 

(b)   Test 2  
Figure 7. Reconstructed error by ACE of the 

application responses 
 

 
CONCLUSION 

 
This summary explores the application of a recently-

developed physics-guided approach denoted by PCM to 
support the validation of using MCNP for the analysis of the 
KUCA cores. We investigate the relation of the biases and 

uncertainties between the highly-enriched fuel pins and low-
enriched fuel pins and attempt to find the mapping that 
describe their mathematical transformation. The numerical 
results notice a fairly linear correlation for the reactivity, 
thermal flux and fast flux between HEU and LEU. Also, the 
ACE tests are performed to find the maximum linear effect 
between the HEU and LEU. For the further work, we want 
to proceed more detailed discussion about the non-
parametric statistical analysis to describe the application 
response more accurately.  
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