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Abstract

The Total Monte Carlo methodology (TMC) for nuclear data (ND) uncertainty propagation has been subject to some cri-
tique because the nuclear reaction parameters are sampled from distributions which have not been rigorously determined
from experimental data. In this study, it is thoroughly explained how TMC and Unified Monte Carlo-B (UMC-B) are
combined to include experimental data in TMC. Random ND files are weighted with likelihood function values computed
by comparing the ND files to experimental data, using experimental covariance matrices generated from information in
the experimental database EXFOR and a set of simple rules. A proof that such weights give a consistent implementation
of Bayes’ theorem is provided. The impact of the weights is mainly studied for a set of integral systems/applications,
e.g., a set of shielding fuel assemblies which shall prevent aging of the pressure vessels of the Swedish nuclear reactors
Ringhals 3 and 4.

In this implementation, the impact from the weighting is small for many of the applications. In some cases, this
can be explained by the fact that the distributions used as priors are too narrow to be valid as such. Another possible
explanation is that the integral systems are highly sensitive to resonance parameters, which effectively are not treated
in this work. In other cases, only a very small number of files get significantly large weights, i.e., the region of interest
is poorly resolved. This convergence issue can be due to the parameter distributions used as priors or model defects, for
example.

Further, some parameters used in the rules for the EXFOR interpretation have been varied. The observed impact
from varying one parameter at a time is not very strong. This can partially be due to the general insensitivity to the
weights seen for many applications, and there can be strong interaction effects. The automatic treatment of outliers has
a quite large impact, however.

To approach more justified ND uncertainties, the rules for the EXFOR interpretation shall be further discussed
and developed, in particular the rules for rejecting outliers, and random ND files that are intended to describe prior
distributions shall be generated. Further, model defects need to be treated.

Keywords: Nuclear data, Uncertainty Propagation, Total Monte Carlo, Experimental Correlations, Unified Monte
Carlo

1. Introduction and Total Monte Carlo

Nuclear data (ND) underpins all nuclear science and
technology [1], and its accuracy is hence paramount. As
for any scientific quantity, ND (and results derived from
it) should be presented with both best estimates and with
uncertainties.

Total Monte Carlo (TMC, [2]) is an ND uncertainty
propagation method based on the idea of sampling nuclear
reaction model parameters to a nuclear reaction code, typ-
ically the TALYS code system T6 [3], which complements
TALYS [4] results with, e.g., resonance data.

∗petter.helgesson@physics.uu.se, Dpt. of Phys. and Astron-
omy, Box 516, 751 20 Uppsala, Sweden

An overview of the methodology is seen in Fig. 1. By
feeding T6 with n randomly sampled sets of parameters,
n ENDF [5] libraries with ND are produced, referred to as
random files in this text. By using each such random file
in a simulation of a nuclear system of interest, n results
for all output quantities are obtained. The output quan-
tities could, e.g., be grouped macroscopic cross sections,
power distribution, keff , decay heat, dose rate, inventories,
etc., to mention a few possible examples. If the ND which
is varied has any relevance to the system, the results will
have a spread because of the varying ND. Using statis-
tical inference one can then estimate the propagated ND
uncertainty in any of the output quantities.

TMC has been applied to numerous different cases,
ranging from shielding models [6], thoroughly studied pin
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Figure 1: An overview of the TMC methodology.

cells [7] and a wide range of criticality safety benchmarks
[8] to full core neutronics simulations [9] and even to mod-
els including thermo-hydraulics [10] and transients [11].

The methodology has a number of advantages com-
pared to the conventional use of covariance matrices and
sensitivities to propagate ND uncertainties; for example,
non-Gaussian output distributions can be observed (ex-
amples of which can be seen in Refs. [2, 12]), it allows for
non-linearities and also for more complete input distribu-
tions than simply central values and covariances. Another
important advantage is the transparency compared to how
the covariance data in the ND evaluations are produced.
Finally, there is no need to process covariance matrices
and to keep track of them in all codes in the entire chain
of simulations.

One of the major drawbacks of TMC is the compu-
tational cost, which typically is most significant if Monte
Carlo transport codes are used. Probably, a more impor-
tant drawback of TMC of today is the determination of the
distributions from which the model parameters are sam-
pled, even though one can argue that conventional meth-
ods suffer from similar problems. Since the nuclear model
parameters are limited by experiments, the experiments
and their uncertainties should determine the distributions
of these parameters. Substantial work has been done to
adjust the distributions to be consistent with the exper-
iments, but unfortunately without a rigorous statistical
analysis, which has been pointed out in, e.g., Refs. [13, 14].
This introduces some arbitrariness in these distributions,
an arbitrariness which clearly propagates to the applica-
tions.

Many options for how to solve this for TMC or related
methodologies have been discussed, for example Backward-
Forward Monte Carlo [15] and Unified Monte Carlo (UMC-
G [16] and UMC-B [17]). The use of “TMC+UMC” was
first suggested in [16] to adress shortcomings of TMC, in
particular the dismissal of experimental correlations, but
the method was not implemented nor tested. A first at-
tempt to combine TMC and UMC was made in Ref. [14]
for evaluation of Prompt Fission Neutron Spectra, but the
methodology was not clearly specified. A Bayesian Monte
Carlo method with similarities to Ref. [15] was presented
in Ref. [18]. In contrast to this work, both these methods
explicitly estimate the posterior distribution of model pa-
rameters, and use certain approximations to do this. Also,
different expressions for the likelihood function are used,

and experimental correlations have not been taken into
account in practice.

In the current authors’ contribution to the Interna-
tional Workshop on Nuclear Data Covariances 2014 (CW-
2014) [19], the problem of including experimental informa-
tion in TMC was tackled similarly to what was suggested
as an “augmented TMC” in the presentation of UMC-B
[17]. That is, Bayes’ theorem was implemented through
the assignment of weights to random ND files, which were
used to calibrate the central values and the ND uncertain-
ties accounting for experimental information in a set of ap-
plications. It was observed that the method could have a
significant impact on the ND uncertainties and possibly an
even larger effect on the central values. It was, however,
concluded that some improvements to the methodology
were necessary. For example, it is important to generate
random files that are intended to be “prior” files, i.e., that
they do not already include experimental information in
such a way that significantly influences the results – this
would lead to an inappropriate double counting of the ex-
perimental information and the original distribution would
still have a strong impact on the results. Further, there
were a number of arbitrary choices made in Ref. [19], for
example, a 1% uncertainty which was fully correlated over
each reaction channel was added to all experimental un-
certainties.

This study is an extension of the work in Ref. [19]
where both the methodology and the results are described
and discussed more carefully, and a few more integral sys-
tems are added. The perhaps most important supplement
is that the sensitivities to the arbitrary choices made in
Ref. [19] are analyzed by a variation of these parameters.
The work primarily aims to further illustrate the method-
ology and to suggest where to focus its future development.

Sec. 2 covers the methodology, including a thorough
explanation of the file weights and how experiments from
the EXFOR database [20] are selected and interpreted to
construct experimental covariance matrices. In Sec. 3.1,
the integral systems studied in this work are briefly de-
scribed and in Sec. 3.2 it is described how the sensitivity
to arbitrary choices in the EXFOR interpretation is inves-
tigated. Results, with emphasis on the integral systems,
follow in Sec. 4. Finally, discussion and conclusions are
found in Secs. 5 and 6, respectively, followed by a rather
extensive appendix with mathematical details and addi-
tional results. In particular, Appendix A includes a for-
mal proof that the use of file weighs proportional to the
likelihood, as implemented in UMC-B and in this paper,
is a consistent implementation of Bayes theorem.

2. Methodology – including experimental data in

TMC

2.1. Using file weights

The basic principle behind the Total Monte Carlo [2,
3, 21] methodology for propagation of nuclear data un-
certainties is easy to understand. Instead of using one
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nuclear data (ND) file for some nuclide, input parameters

p = (p1, p2, ..., pj , ..., pN )T to a nuclear reaction code such
as the TALYS code system [3, 22] are randomly sampled
n times. This gives n ND files, each of which can be used
in, e.g., the computation of some quantity q in a nuclear
system using a code such as MCNP [23]. Thus, one ob-
tains n results for q which may be different due to the use
of different ND files. The spread in the results can be used
to quantify the uncertainty in q due to the considered ND,
cf. Sec. 1 and Fig. 1. It is easy to implement TMC to
assess ND uncertainties from various types of ND and a
wide range of nuclides using freely available random ND
files from the TENDL [3] homepage.

The spread of the investigated quantity q will depend
strongly on which distribution the parameters p are sam-
pled from. This distribution is quantified by a probability
density function (PDF) f(p). The parameters may in gen-
eral be correlated to each other such that f(p) should be
multivariate instead of a product of N univariate distribu-
tions fj(pj). The determination of f(p) is difficult, since
it is meant to quantify something as abstract as the cur-
rent knowledge of the parameters. For the random ND
files available at the TENDL homepage, the parameters
have been sampled from distributions that are intended to
quantify this knowledge, unfortunately without a strong
theoretical foundation, but rather based on practical ex-
perience.

The nuclear reaction models that involve the parame-
ters p are motivated by theory, but the actual values of
the parameters are determined mainly from experiments.
Therefore, the knowledge from experiments is regarded to
dominate f(p) in this work. In Sec. 2.2, it is described
how Bayes’ theorem is used to include experimental in-
formation into f(p). In practice, for k ∈ {1, 2, ..., n}, the
k’th ND file is given a weight which is proportional to the
likelihood function

L
(
p(k);x

)
∝ e−χ2

k/2, (1)

where “the generalized χ2”,

χ2
k =

(
x− τ

(k)
)T

C
−1
E

(
x− τ

(k)
)
, (2)

is a measure of the agreement between the considered
experimental points x = (x1, x2, ..., xm)

T
and the corre-

sponding values in the k’th random file, τ(k) =
(
τ
(k)
1 , τ

(k)
2 ,

..., τ
(k)
m

)T
= τ

(
p(k)

)
(obtained with the k’th parameter

set p(k)). The matrix CE is the “experimental covariance
matrix”, describing the uncertainties for the experimen-
tal points and also the correlations between them, arising
from systematic uncertainties such as uncertainty in sam-
ple thicknesses, uncertainty in normalizing cross sections,
etc. To more easily understand Eq. (2), one can note that
if the experiments would be independent (so that CE is
diagonal with (CE)ii = σ2

i being the variance of the i’th

experimental point),

χ2
k =

m∑

i=1

(
xi − τ

(k)
i

)2

σ2
i

, (3)

which many people recognize as “the χ2”.
After a more thorough description of the background

and details of Eqs. (1) and (2) in Sec. 2.2, the estimation
of the experimental covariance matrix CE is discussed in
Secs. 2.3 to 2.5.

2.2. Mathematical formalism

The experimental points x = (x1, x2, ..., xm)
T
are ob-

servations of corresponding random variables X = (X1,

X2, ..., Xm)
T
. That is, X has a distribution describing the

probability for the outcomes of experiments with identical
setups as the performed experiments, and x are the obser-
vations that happened to be realized. It is possible for x to
span over different energies, different types of ND and dif-
ferent nuclides. For example, x1 could be a measurement
of the (n,2n) cross section at 14MeV for 235U while x2 is
a measurement of the fission neutron yield, ν̄, at 25meV
for 239Pu. In this study, the experiments are restricted to
cover cross sections and only one nuclide is considered at
a time.

Now, assume that f0(p) is the PDF for p excluding the
experimental information in x (the prior). Bayes’ theorem
states that the PDF for p given x is

f(p|x) ∝ L(p;x)f0(p), (4)

where ∝ means “proportional to” and the likelihood func-
tion L(p;x) = fX (x|p) is the PDF for X given p, evalu-
ated at x. That is, assuming that the particular p is the
“true” set of parameters, L(p;x) is the value of the PDF
for X at x.

Assume that p(k) are sampled from f0(p) for k ∈ {1, 2,
..., n}. Given such a sample, one can (e.g. using T6) com-

pute theoretical values τ(k) =
(
τ
(k)
1 , τ

(k)
2 , ..., τ

(k)
m

)T
corre-

sponding to each experimental value in x. Assuming that
p(k) is true for k ∈ {1, 2, ..., n}, i.e. that the k’th set of pa-
rameters provides a perfect representation of the physics,
and that the errors in the experiments (systematic and
random) are symmetrically distributed around zero, the
expected value of X is 〈X〉 = τ(p(k)). If X is normally
distributed with covariance matrix CE, it follows directly
from the definition of a multivariate normal distribution
that the PDF for X given p(k), i.e. L

(
p(k);x

)
, becomes

[24]

L
(
p(k);x

)
= fX

(
x|p(k)

)
=

e−χ2
k/2

(2π)m/2
√
det (CE)

, (5)

where χ2
k is defined in Eq. (2). Since the denominator is

independent of p(k), Eq. (1) follows. To assume that X

is Gaussian is conventional and to some extent supported
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by the central limit theorem [24] and by the principle of
maximum entropy [25, 26].

In Appendix Appendix A, it is seen that with weights
defined as

wk :=
L(p(k),x)∑n
κ=1 L(p

(κ),x)
, (6)

(“:=” denotes that wk is defined by this equation) and if
q is some integral or differential quantity (e.g., neutron
multiplicity keff or a cross section at a particular energy),
then

q̂j (p) :=

n∑

k=1

wkq
j
(
p(k)

)
(7)

is a consistent estimate of the jth moment of q given x,
i.e. of

〈
qj(p)

〉
f(p|x)

, where the subscript denotes that the

expected value is taken with respect to the PDF f(p|x).
Note that the full posterior PDF, including correlations
and higher moments, is implicitly taken into account in
contrast to, e.g., Refs. [15] and [18]. In these cases, either
a multivariate Gaussian or zero correlations are assumed
for p (which may have practical advantages).

With j = 1, q̂j (p) = q̂ (p) simply estimates the ex-
pected value of q, and using the estimates of both the first
and second moment one can obtain an estimate for the
variance of q, namely,

σ2
observed(q) = q̂2 (p)−

(
q̂ (p)

)2
. (8)

Since the estimates of both moments are consistent, Slut-
sky’s theorem (Eq. (A.5)) yields that this is a consistent
estimate of the variance.

In many cases, such as in this work, particle trans-
port codes are Monte Carlo codes, giving rise to a random
uncertainty in the results for q aside from the ND uncer-
tainty. As discussed in Refs. [21, 7], the random variance
can be estimated either by using the uncertainty estimates
from the transport code or by performing a number of runs
without varying any ND (in this work, the latter method is
used to avoid the risk of a bias in the estimate of the statis-
tical uncertainty in Monte Carlo transport codes pointed
out in, e.g., Ref. [27]). Denoting this estimate σ2

stat(q),
one standard deviation due to ND uncertainty can be es-
timated using

σND(q) =
√
σ2
observed(q)− σ2

stat(q), (9)

as is also discussed in Refs. [21, 7], in these cases without
any weights in the definition of σ2

observed(q), however.
The uncertainty of the uncertainty itself, i.e. the un-

certainty due to finite sample sizes of the estimates ob-
tained using Eq. (9), is estimated by repeatedly dividing
the observations into two groups as described in [7]. This
estimate should be interpreted with care if only a small
number of files have significantly large weights.

In this study, the distributions inherent in the files ob-
tained from the TENDL homepage are used as prior distri-
butions f0(p) for each considered nuclide, determining the

distribution of the theoretical values τ. Since these files
are intended to include the experimental information, the
distributions are not appropriate priors. This should be
kept in mind when interpreting the results, and in future
studies other random files should be used.

2.3. Interpreting the EXFOR database

In this study, experimental cross section data for en-
ergies below and above the resonance range, taken from
the EXFOR database [20] in both the original format and
in the xc4 format is used. The latter format is more con-
venient for computational applications but lacks some of
the original information. Estimates of experimental co-
variance matrices are rarely available in EXFOR [28], and
the full experimental covariance matrix CE (i.e. including
cross-experimental correlations), necessary for computing
χ2 using Eq. (2), is certainly not available. However, with
information on random and systematic uncertainties, CE

can be estimated as described in Sec. 2.4. Some of this
information can be found in EXFOR, but the information
is not complete and the interpretation of the database is
not straightforward. Therefore, the set of rules below are
used to obtain estimates of random and systematic uncer-
tainties. Observe that the rules are preliminary and quite
coarse at this stage, and that they in future studies shall
be refined with an extraction of more details from EXFOR
and more justified assumptions.

1. EXFOR entries with a root-mean-square uncertainty
of less than 0.1% are, coarsely, considered unrealistic
and are discarded.

2. If only one uncertainty estimate is given for each ex-
perimental point, the point is assigned with both a
random and a systematic uncertainty of this magni-
tude. In this way, experiments with a less rigorous
uncertainty treatment are conservatively penalized.
If there are more than one uncertainty estimate per
point given, uncertainties denoted ERR-S are inter-
preted as random, and all others are considered sys-
tematic. If no uncertainty denoted ERR-S is found,
the uncertainty according to the xc4 format is used
as random.

3. The neutron energy in the i’th experimental point
(i ∈ {1, 2, ...,m}) comes with uncertainties of two
different kinds:

(a) The “energy spectrum width” ∆E′
i of the neu-

tron flux (typically of a neutron beam), giving
an uncertainty in the energy of each incoming
neutron, such that the measured cross section
becomes an average weighted with the distribu-
tion of the neutrons.

(b) The mean energyE0,i has an uncertainty ∆E0,i.

In this study, it is assumed that energy resolutions
quoted in the xc4 formatted EXFOR files refer to
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the first type, ∆E′
i. If no energy resolution is given,

it is assumed that ∆E′
i = 1%. Further, it is assumed

that ∆E0,i = 0.5% for all experimental points. With
these assumptions, ∆E′

i and ∆E0,i are “translated”
to uncertainties in the cross section of the random
files τ

(k)
i (k ∈ {1, 2, ..., n}). This is done by assum-

ing a normal distribution for the PDF for the indi-
vidual neutron’s deviation from the average energy
E0,i, written as fE′

i
(E′−E0,i), and also for the PDF

for E0,i, denoted fE0,i(E). The distributions have
variances (∆E′

i)
2 and (∆E0,i)

2 and expected values
〈E′

i − E0,i〉 = 0 and 〈E0,i〉 = Ei, respectively, where
Ei is the quoted energy for the i’th experimental
point.

If the pointwise theoretical value at energy E′ is
ς(E′), the cross section one would observe at E0,i,
with an energy spectrum described by fE′

i
(E′−E0,i),

is

ςobserved(E0,i) =

∫ ∞

−∞

fE′
i
(E′ −E0,i)ς(E

′) dE′, (10)

using the above definition of fE′
i
(E′ −E0,i), describ-

ing the spread in energy of the individual neutrons.
Thus, also taking the uncertainty of the peak energy
E0,i into account (quantified by the PDF fE0,i(E)),

the variance in τ
(k)
i due to the energy resolution is

V∆E(τi) =

∫

∞

−∞

fE0,i
(E)

(
∫

∞

−∞

fE′
i
(E′ − E0,i)ς(E

′)

)2

dE′ dE

−

(
∫

∞

−∞

fE0,i
(E)

∫

∞

−∞

fE′
i
(E′ −E0,i)ς(E

′) dE′ dE

)2

,

(11)

using that V (ςobserved(E0,i)) =
〈
ς2observed(E0,i)

〉
−

〈ςobserved(E0,i)〉
2
. In practice, the average theoret-

ical (T6) value at the energy E′ is used for ς(E′).
Numerically, the integration is carried out using the
trapezoidal rule using the grid provided in the ran-
dom ACE file with the greatest index (see Sec. 3.1),
and with integration limits at the grid points closest
to, but outside, the range Ei ±

√
(∆E′

i)
2 + (∆E0,i)2

(the probability densities are first normalized with
respect to these integration limits). In practice, this
variance is added to the random variance of the ex-
perimental point. It may be a good idea to consider
this uncertainty as systematic in future work.

4. If the total systematic uncertainty is less than σsys,min

= 2% (relative to the average theoretical value),
a systematical uncertainty is added such that this
value is reached. The same procedure but with
σstat,min = 1% is used for the random uncertainty.

5. Extra uncertainties of σsys,extra abs = σstat,extra abs =
1mb are added to the systematic and random un-
certainty, respectively, for each experimental point as
well as an extra random uncertainty of σstat,extra rel to σ

= 20% relative to the random uncertainty and an
extra systematic uncertainty of σsys,extra rel = 0.5%
relative to the average theoretical value. These addi-
tions are due to a belief that experimental uncertain-
ties often are underestimated, e.g., only random un-
certainty due to Poisson statistics may be reported.
Also, adding an absolute uncertainty decreases the
importance of smaller cross sections which typically
are less important in applications since larger cross
sections dominate.

6. An uncertainty of σfully correlated = 1% which is fully
correlated for all experimental points within the same
reaction channel is used. This is a temporary at-
tempt to take cross-experimental correlations, aris-
ing from e.g. relative measurements, into account.

The above introduced EXFOR interpretation parameters
(EI parameters) σfully correlated, σstat,extra rel to σ, σsys,extra rel,
σstat,extra abs, σsys,extra abs, σstat,min , σsys,min as well as Ptol

(defined in Sec. 2.5) are varied in Sec. 3.2.

2.4. Building the experimental covariance matrix CE

Given the random and systematic uncertainties from
Sec. 2.3, we construct the element on the i’th row and
in the j’th column of the experimental covariance matrix
according to

(CE)ij = δijσ
2
i +

ν∑

ℓ=1

σiℓσjℓ, (12)

where σ2
i is the random variance of the i’th experimental

point, σiℓ is the uncertainty in the i’th experimental point
due to the ℓ’th systematic contribution, ν is the number
of systematic contributions (for all the considered experi-
mental points) and the Kronecker delta, δij , equals unity if
i = j and zero otherwise. A systematic contribution could
be, e.g., some particular target’s thickness, the detector
efficiency of a particular detector in some energy range or
a particular normalizing cross section.

The expression in Eq. (12) results from modeling the
random variableXi, describing the i’th experimental point,
as

Xi = Yi +

ν∑

ℓ=1

σiℓεℓ, (13)

where Yi is a random variable defined such that 〈Yi〉 is the
true value for the desired quantity and V (Yi) = σ2

i , εℓ is
a random variable describing the ℓ’th systematic contri-
bution, with 〈εℓ〉 = 0 and V (εℓ) = 1 (an observation of
the product σiℓεℓ is the error due to the ℓ’th systematic
contribution). εℓ and Yi are all mutually independent.

Under these assumptions, taking the covariance be-
tween the random variables describing the i’th and j’th
experimental points, Xi and Xj , yields Eq. (12), since all
other terms become zero and since V (εℓ) = 1.
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2.5. Treating outliers and discarding energy zones

Just as in Ref. [19], outlying experiments (and “en-
ergy zones”, see below) are in this study identified based
on their deviation from the used nuclear data files. This
procedure has the risk of confirming erroneous nuclear
data because the evidence against it is rejected due to
the same particular error. Nevertheless, this methodology
is presently used because of its simplicity, but it shall be
improved in future work.

As described below, an approximate p-value is com-
puted for each experiment, which under certain (very strong)
assumptions describes the probability for an observation at
least as extreme as the observed experimental result. This
p-value is compared to a tolerance Ptol = 5% , and if the
p-value is less than Ptol, the experiment is considered to be
an outlier and is excluded from the random file weighting.
The p-value is estimated from the difference between the
respective experiments and the corresponding mean values
of the random files taking both the experimental covari-
ance and the covariance in the random files into account.
At the end of the section, it is also described how the ex-
periments are grouped into “energy zones”, which also can
be rejected using similar p-values.

For j ∈ {1, 2, ...,M}, where M is the number of experi-
ments, let x(j) be the vector with the experimental results
in experiment j (a part of the vector x) and define τ(j) as
the mean value of the corresponding values in the random
ND files. Further assume that CE(j) is the experimental
covariance matrix for the j’th experiment, i.e. the block in
CE with indices corresponding to the experimental points
in x(j). Finally, let Cτ(j) denote the covariance for the
corresponding theoretical values inherent in the random
files, simply the matrix with sample covariances over the
random files. Now define

χ2
(j),central :=

(
x(j) − τ(j)

)T (
CE(j) + Cτ(j)

)−1 (
x(j) − τ(j)

)

(14)
and compute

Pj := 1− Fχ2(mj)

(
χ2
(j),central

)
, (15)

where mj is the number of experimental points in exper-
iment j and Fχ2(mj) is the distribution function for a χ2-
distributed random variable with mj degrees of freedom.
Then, the experiment is rejected if Pj < Ptol = 5%.

The motivation for Eqs. (14) and (15) follows. Anal-
ogously to how x is an observation of X, X(j) is defined
such that x(j) is an observation of X(j). Define M(j) as
the random vector describing the true (unknown) values
for the physical quantities corresponding to X(j). Con-
sider the j’th experiment given that M(j) = m(j) for some
(non-random) vector m(j), denoted X(j)|(M(j) = m(j)).
It is natural to assume that X(j) is distributed around the

true values, i.e.,
〈
X(j)|(M(j) = m(j))

〉
= m(j), and it is

already assumed that X is Gaussian with covariance ma-
trix CE such that X(j) is Gaussian with covariance matrix

CE(j) [29], giving X(j)|(M(j) = m(j)) ∼ N
(
m(j),CE(j)

)
.

Further assume that M(j) ∼ N
(
τ(j),Cτ(j)

)
. This can be

interpreted as if the true values are distributed according
to the information in the random files which is the desired
interpretation of the random files; however, this is a circu-
lar argument since we want to determine this distribution.
To summarize, we have

X(j)|(M(j) = m(j)) ∼ N
(
m(j),CE(j)

)

with M(j) ∼ N
(
τ(j),Cτ(j)

)
,

(16)

cf., Ref. [24, Sec. II.3]. It can be seen from Ref. [30] that
this implies

X(j) ∼ N
(
τ(j),CE(j) + Cτ(j)

)
. (17)

Assuming that τ(j) really is a fixed vector (that it is not
adapted to fit observations of X(j)), this gives

X(j) − τ(j) ∼ N
(
0mj

,CE(j) + Cτ(j)

)
, (18)

where 0mj
is the zero column vector with mj elements.

Thus [24],

(
X(j) − τ(j)

)T (
CE(j) + Cτ(j)

)−1 (
X(j) − τ(j)

)
∼ χ2(mj),

(19)
yielding that Pj of Eq. (15) is the p-value for the observa-
tion of xj .

For some reaction channels in some energy ranges (“en-
ergy zones”), the used random files do not agree well with
experimental data. If there are many different experiments
available, it is unlikely that this is due to unknown sys-
tematic errors in the experiments, and the deviation can
be due to either an erroneous parameter distribution or
the fact that the models are imperfect. To ensure that
such zones do not have a large impact on the weights,
an attempt is made to automatically identify such zones
and remove them from the weight assigning. First, let
“energy zone” refer to a combination of a particular re-
action channel and one of the following energy ranges:
[0, 0.1) eV, [0.1, 1) eV, [1, 5) eV, [1, 5) MeV, [5, 10) MeV
and [10, 20) MeV. Now, the experiments are divided into
experimental subsets defined by which energy zone they
belong to. Then, for j spanning over all experimental sub-
sets which is in one energy zone, Pj is obtained from Eqs.
(14) and (15) and subset j is determined to be an outlying
subset if Pj < Ptol. If more than half of the experimental
subsets in one energy zone is determined to be an outlier,
the whole energy zone is discarded. In practice, the rejec-
tion of energy zones is carried out before the rejection of
experiments, such that the subsets of an experiment (cov-
ering several energy zones) in the surviving energy zones
may “survive” even if the experiment as a whole would be
rejected.

Note that experiments and energy zones are rejected
before the rules in Sec. 2.3 are applied, in contrast to what
is done in Ref. [19].
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3. This study: applications, considered nuclear data

and sensitivities

Since the methodology primarily focuses on finding un-
certainties due to nuclear data in simulated integral sys-
tems (“applications”), a selection of applications has been
studied for this paper. In Sec. 3.1, the reader finds short
descriptions of each application along with which data has
been varied and which output quantities that have been
studied.

In all cases the files are weighted using the (n,tot),
(n,el), (n,2n), (n,f) and (n,γ) cross sections where they
apply; for 56Fe, the (n,n′) cross section is also included.
The weights are obtained from experiments with neutron
energies E < 5 eV or E ≥ 1MeV, depending on whether
the system is judged to have a thermal spectrum or a fast
spectrum, respectively. These energy limits are chosen to
include the most important energies except the resonance
range. In principle, one can use both energy ranges si-
multaneously, but the files are randomized with high and
low energies independently of each other, why this most
likely will lead to a loss of precision without much gain in
accuracy.

The theoretical values τ are obtained from ACE files
(format used for nuclear data in, e.g., MCNP) that are ob-
tained from processing by NJOY 99.336 [31] at a temper-
ature of 300K. The TMC methodology is applied twice,
both using the full random ND files and using random data
only for the cross section data in the energy ranges that
are used in the weighting (E < 5 eV or E ≥ 1MeV); the
latter is referred to as partial variation in the following.
For the partial variation, n copies are made of the default
TENDL-2012 ACE file (processed using the appropriate
temperature as in the reference of each application) and
then the cross sections of each random ACE file is inserted
into the corresponding copy in the desired energy range,
using linear interpolation to match the energy grid. An-
gular distributions, fission neutron yield (ν̄) and cross sec-
tions at other energies, for example, are thus kept fixed
in these cases. This is to isolate the effects of the nuclear
data and the energy ranges for which experiments have
been used. The results will focus on the runs using the
partial variation, but the results using the variation of the
full random files are also provided since they are the more
complete estimates of the ND uncertainty.

3.1. Applications

Below, the different applications are described. The
information is summarized in Table 1.

• A PWR pin cell modeled with depletion in Serpent
[32] as in Ref. [7], either with UO2 or MOX fuel. In
the UO2 case,

235U, 238U and 239Pu have been varied
(separately). In the MOX case, only 239Pu has been
varied. The neutron multiplication factor k∞ at End
Of Life (EOL) is studied (any output from Serpent
can easily be studied but the amount of information
becomes huge).

• A Serpent model of the lead cooled conceptual reac-
tor design ELECTRA (European LEad Cooled Re-
Actor) as in Refs. [33, 34], only at beginning of life.
239Pu data is varied and the uncertainty in keff is
studied.

• An MCNP-6 [35] model of a 14MeV neutron source
shielded by a concrete wall at the FREIA facility at
Uppsala University, as in Ref. [6] but with ENDF/B-
VI.2 and older libraries replaced by ENDF/B-VII.1.
The concrete has a high content of iron, and the
impact of 56Fe data on the dose per source neutron
is studied. In Ref. [6], the uncertainty due to 56Fe
data is found to be 4.2%.

• An MCNP-6 model of the 239Pu Jezebel benchmark
[36] (plutonium-metal-fast-001 in the International
Handbook of Evaluated Criticality Safety Benchmark
Experiments [37]), an unreflected, critical, plutonium
sphere. In the actual experiment, keff was close to 1,
but due to an uncertainty in the actual critical mass
(for example including corrections for an imperfect
sphere), the “experimental uncertainty” is estimated
to give keff = 1.000± 0.002 [36].

• An MCNP-6 model used in Ref. [38] to compute the
shielding factor obtained from using shielding fuel
assemblies (SFA). The study in Ref. [38] is part of
the design of the second generation of the SFA in
Vattenfall’s Ringhals 3 and 4 reactors in southern
Sweden. The SFA reduce the reactor vessel’s ex-
posure to high-energy neutron flux – the shielding
factor is defined as the fast flux (E > 1MeV) near
a sensitive weld in a reference case without SFA’s
divided by that obtained using the SFA’s. Here, the
56Fe data uncertainty in the flux of the 29th cycle of
Ringhals 3 is studied. The results quoted through-
out this text except in Sec. 4.4 concern the flux at
the point at the weld where y = 0 (in the studied
quarter of the reactor), see Fig. 10.

3.2. Sensitivity to arbitrary choices

In Sec. 2.3, it is described how the EXFOR database is
interpreted in this study. At several stages in the interpre-
tation, quite arbitrary choices have been made, and it is
relevant to ask how these choices may affect the results. To
this end, many of the EXFOR interpretation parameters
(EI parameters) and the rejection parameters have been
varied according to the ranges in Table 2. Ptol, defined
in Sec. 2.5, is also included among the EI parameters. In
each case, all other parameters have been fixed to their de-
fault values, given in Secs. 2.3 and 2.5 and in boldface font
in Table 2. The resulting weights as well as their impact
on both the cross sections and on the applications have
been studied.

The variations range over rather extreme values (e.g.,
σfully correlated ranges up to 104%). This is to study limit-
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Table 1: Summation of the application runs in this study. “Quantity” refers to the one most thoroughly studied output quantity.

# of random files weights from E
Run # Appl. Quantitiy 239Pu 235U 238U 56Fe < 5 eV ≥ 1MeV

1 UO2 pin k∞ at EOL 683 - - - X -
2 UO2 pin k∞ at EOL - 740 - - X -
3 UO2 pin k∞ at EOL - - 345 - X -
4 MOX pin k∞ at EOL 683 - - - X -
5 Jezebel keff 683 - - - - X

6 electra keff 683 - - - - X
7 freia Dose/n - - - 896 - X

8 SFA φ(E > 1MeV) - - - 200 - X

Table 2: The used values of the EXFOR-interpretation parameters
and rejection parameters that are varied in the sensitivity study.
Definitions in Sec. 2.3 and Sec. 2.5, respectively. Default values in
boldface.

Parameter Range
σfully correlated [%] 0, 0.5,1, 3, 5, 10, 100, 1000, 104

σstat,extra rel to σ [%] 0, 5, 10,20, 50, 500
σsys,extra rel [%] 0, 0.25,0.5, 1, 5, 100

σstat,extra abs [mb] 0, 0.5,1, 2, 5, 1000
σsys,extra abs [mb] 0, 0.5,1, 2, 5, 1000
σstat,min [%] 0, 0.1, 0.5,1, 2, 5, 10, 100
σsys,min [%] 0, 0.2, 1,2, 5, 10, 100
Ptol [%] 0, 1,5, 10, 50

ing behavior for verification purposes and theoretical dis-
cussion.

4. Results

In this section, the central values and ND uncertain-
ties for the applications described in Sec. 3.1 are found. In
Sec. 4.1, the results are presented with and without apply-
ing the default file weights, and Sec. 4.2 covers the main
findings from varying the different EI parameters accord-
ing to Sec. 3.2. Weights for the corresponding ND from
other ND libraries such as ENDF/B-VII.1 are found in
Sec. 4.3. Finally, the results for the Shielding fuel assem-
blies (SFA) are studied a bit more thoroughly in Sec. 4.4,
since this application have not been studied before with
respect to ND uncertainties.

4.1. Integral results with default weights

Table 3 views the central values and estimates of the
ND uncertainty using partial variations, with and with-
out using the weights for the random files, obtained using
the default settings for the EI parameters. The table also
views the unweighted results that are obtained using the
full random files in the variation.

The uncertainties vary depending on the applications
and on which sets of ND that are varied, and the un-
weighted uncertainties obtained with the full random files
agree with other studies using TMC [7, 39, 6], except for
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Figure 2: The unweighted and default weighted distribution of k∞
at EOL for the UO2 pin cell, varying 235U data.

the SFA, which have not previously been studied with re-
spect to ND uncertainties. For FREIA, there is some dis-
crepancy compared to Ref. [6], but this can be explained
by that newer nuclear data libraries are used in this study.
For the SFA (which are discussed more in Sec. 4.4), the un-
weighted ND uncertainty is (perhaps surprisingly) greater
for partial variations than for variation of the full random
files.

In most cases, the partial variation contributes to a
large part of the uncertainty obtained from full variation, if
not even the majority. The exceptions are ELECTRA and,
more distinguishing, the UO2 pin varying 238U. Since the
unweighted uncertainty obtained with partial variations
in the latter of these two cases is practically zero, there
is not much that can be said from the weighted result in
this case; since it is limited by a distribution giving such
a small uncertainty, the weighted uncertainty will also be
very small.

In the other cases with thermal systems, varying 239Pu
or 235U, the unweighted uncertainties differ from zero while
the weighted uncertainties become zero. The central val-
ues are significantly shifted by the weights, too. A closer
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Table 3: Central values and ND uncertainties for the main quantities of the integral systems described in Sec. 3.1 with the full random files
and with the partial random files, with and without using the default file weights. The quoted uncertainties denote estimates of one standard
deviation.

Full var. Partial variation
Exp. from Application ND Quantity Unw. Unw. Weighted

E < 5 eV
UO2 pin

239Pu
k∞ .8952(2) .8955(2) .8985(4)

σND [%] .54(2) .46(1) .(3) · 10−2

235U
k∞ .89154(8) .89315(5) .8946(3)

σND [%] .240(6) .117(5) .(2) · 10−2

238U
k∞ .8969(2) .89333(4) .89337(6)

σND [%] .37(1) 2(1) · 10−2 2(2) · 10−2

MOX pin 239Pu
k∞ .9124(2) .9129(1) .9158(2)

σND [%] .49(2) .34(1) .(2) · 10−2

E ≥ 1MeV

Jezebel 239Pu
keff 1.0008(4) 1.0010(2) 1.000(2)

σND [%] .95(2) .59(2) .56(9)

ELECTRA 239Pu
keff 1.0010(3) 1.00123(9) 1.0011(7)

σND [%] .74(2) .206(7) .23(6)

FREIA 56Fe
Dose [pSv/n] 1.324(5) 1.344(3) 1.308(5)

σND [%] 5.6(3) 5.7(3) 4.8(4)

SFA 56Fe
φ [109 cm−1s−1] 5.12(1) 5.12(1) 5.11(3)

σND [%] 2.5(2) 3.1(2) 3.1(3)

investigation shows that there are only a very small num-
ber of files that obtain significant weights which results
in very peaked distributions, i.e., the results are poorly
converged. One such peaked distribution can be seen in
Fig. 2, which views the distribution of k∞ at EOL for
the UO2 pin varying 235U data, with and without using
the file weights. The observed standard deviation using
weights (0.04% ± 0.05%) is less than the random un-
certaint. Therefore the uncertainty is reported as zero
(directly applying Eq. (9) would give an imaginary un-
certainty). Because of the small number of significant
weights, the uncertainties of the ND uncertainties and
the central values should be interpreted carefully, as men-
tioned in Sec. 2.2 – they are quite meaningless. The possi-
ble reasons for the few significant file weights observed in
these cases are discussed in Sec. 5.2.

The change in ND uncertainty for FREIA can barely
be judged as significant, but the central value is shifted
significantly (see Sec. 5.6 for a discussion on statistical sig-
nificance in this context). In the other cases, the weighted
results in Table 3 do not differ significantly from the un-
weighted results, the reasons for which are discussed in
Sec. 5.1. In almost all cases, including these, the uncer-
tainty of the ND uncertainty and in the central value is
increased, due to the smaller number of files being impor-
tant for the distributions.

4.2. Sensitivity to EI parameters

4.2.1. Main findings

The main findings in the effect from the variation of
the different EI parameters on the distributions for the
results for the integral systems are described in the bullet
list below. More detailed results from varying Ptol are
found in Sec. 4.2.2.

• For most of the considered EI parameter values, the
ND uncertainty for the thermal systems (UO2 or

MOX pin cell) varying 235U or 239Pu is estimated
to be zero when the weights are applied, while the
unweighted case yields a propagated ND uncertain-
ties of more than 0.1% for 235U and around 0.4%
for 239Pu. The central values may shift significantly
when varying some EI parameters, though. Study-
ing the average weight for the 235U and 239Pu ran-
dom files reveals an explanation; it is less than 0.2%
and 0.4% of wmax , respectively, in almost all cases,
and the file with the maximum weight alone con-
tributes to 1/n & 1/740 = 0.14% of these (n is
the number of files). Hence, a very small number
of files contribute significantly to the weighted dis-
tribution. This was seen for the default weights in
Sec. 4.1 and the corresponding narrow distribution
was illustrated for 235U in Fig. 2. The occasional
shifts in the central values are simply due to that
the actual file(s) with the greatest weights may vary
with the EI parameter values, even though the num-
ber of significant files stays low. An example of this
can be seen in Fig. 4, where the distribution of k∞
is viewed, without weights and with weights using
σfully correlated = 1% and 3%, respectively. Here, the
shift in the central value is obtained from moving the
majority of the weight from a few files in two bins
to another single bin (in practice to one single ran-
dom file), a process which clearly is highly sensitive
to random fluctuations.

• The 239Pu random files also get low average weights
using experiments from E ≥ 1MeV. This does not
propagate to give a zero uncertainty as for 235U and
239Pu-thermal; instead, neither the central values
nor the ND uncertainty estimates are affected much
by the weights. According to Fig. 3, which shows the
unweighted and the default weighted distribution of
keff for Jezebel, it seems that the weighting and the
keff values are effectively uncorrelated which results
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Figure 3: The unweighted and default weighted distribution of keff
for Jezebel, varying 239Pu data.

in practically the same distribution, although more
“noisy” because of the few files with a significant
weight.

• Not much can be said about the weighted propagated
uncertainty in the 238U case since the unweighted
distribution in the integral result is very narrow (us-
ing partial variations), as noted already in Sec. 4.1.
The central value is very close to the unweighted
value for all studied EI parameter settings, and the
ND uncertainty estimate is very small. However, it
can be noted that there are relatively many random
238U files with significant weights, the average weight
is on the order of 10% for all EI parameter values.

• Neither the central value or the ND uncertainty es-
timate changes much with the EI parameters for the
SFA, with one exception, namely in the case when
Ptol = 0, which is studied more in Sec. 4.2.2.

• For FREIA, the ND uncertainty is quite unaffected
by the weights, but the central value is shifted to-
wards lower values for most EI parameter choices.
The distributions for the dose rate with and without
using the default weights are seen in Fig. 5. The sta-
tistical significance of, e.g., this shift is discussed in
Sec. 5.6. In most cases, the shift decreases as the EI
parameters increase (effectively giving larger experi-
mental uncertainty).

• Increasing random experimental uncertainty typically
gives more files with significant weights, which is easy
to intuitively understand (the distributions become
“wider”). For systematic experimental uncertainty,
however, the picture is not as clear; sometimes an
increased systematic uncertainty gives a more nar-
row distribution of the random files, and an effect
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Figure 5: The unweighted and default weighted distribution of the
FREIA dose rate, varying 56Fe data.

of reaching an equilibrium is seen (referred to as
“saturation” below). This saturation effect can be
observed in Figs. 6 and 7. In Fig. 6, the central
values and ND uncertainties for the quantities in the
fast integral systems when varying σfully correlated are
viewed, and Fig. 7 shows the average weights for
all cases relevant to the integral systems, also as
a function of σfully correlated. One can see that the
average weights can both increase and decrease as
σfully correlated increases, but when increasing σfully correlated

from the rather extreme 103% to 104%, the differ-
ence is small. In fact, the largest difference between
the likelihood function in the two cases is less than
0.5%. Following from this, the central values and
the ND uncertainty estimates are also very similar
in the two cases. This saturation as well as the fact
that the average weights are observed to sometimes
decrease when systematic uncertainties increase are
discussed in Sec. 5.3.

• Many of the EI parameters do not impact neither
of the applications much as long as they are within
“reasonable ranges ” (i.e. close to their default val-
ues) except for 239Pu but this can be due to statisti-
cal fluctuations as mentioned above. The EI param-
eters σfully correlated, σsys,extra rel and Ptol, however,
have substantial effects on the average file weights
even when they are varied close to their defaults.

• In practically all cases, the uncertainty of the cen-
tral value and of the ND uncertainty estimate itself
increases when the weights are applied, due to the
effectively smaller number of random files.
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4.2.2. Varying Ptol

Because of the particular nature of Ptol (determining
the “p-value” to be the limit for discarding experiments
and “energy zones”), it is studied in some more detail here.
The central values and ND uncertainties for the fast inte-
gral systems when Ptol is varied are seen in Fig. 8. In
all cases shown in the figure, the ND uncertainty estimate
vanishes when Ptol = 0%, i.e., when all experiments are
accepted. The same holds in all other cases except when
238U is varied. The average weights, see Fig. 9, expose
that Ptol = 0% implies that almost only one file becomes
significant in all these cases, which leads to this zero uncer-
tainty estimate. These very narrow distributions are not
very surprising since some of the experiments contained in
EXFOR are likely to be erroneous and without any selec-
tion of experiments, experiments which differ very much
from the random files can be included. They will have
a large impact on the weights due to the exponential be-
havior of the likelihood function, see Eq. (1). 238U is un-
affected since almost no experiments are rejected anyway
(except for Ptol = 50%).

Tables 4 to 7 show which energy zones are rejected
for each choice of Ptol. The tables also view the number
of experiments which have points in each zone and the
number of experimental points in each zone. Ptol = 0% is
omitted from the tables since no zones are rejected with
this choice. One can see that in many cases, either the
zone gets rejected for all used non-zero choices of Ptol or
not at all; many other zones get rejected for Ptol = 50%
only.

For the default, Ptol = 5%, one can note that the
total cross section often is rejected; e.g., for 239Pu and
235U this happens for E ∈ [0.1, 5) eV. For 238U, no zones
with low energies are rejected using Ptol = 5%, indicating
a good agreement between experiments and the random
files, which is also indicated by the relatively large weights.
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Table 4: The number of experiments and experimental points in each
energy zone for 239Pu, and which zones are rejected for different
choices of Ptol. “×” means that a zone is rejected and “X” that a
zone is kept. The number of experiments and experimental points
refer to all those in EXFOR passing rule number 1 in Sec. 2.3.

Ptol [%]
# exp’s # points 1 5 10 50

(n,tot)

[0, 100)meV 10 108 X X X X

[100, 1000)meV 11 360 × × × ×
[1, 5) eV 10 1123 × × × ×

[1, 5)MeV 8 1649 X X X X

[5, 10)MeV 5 383 X X × ×
[10, 20)MeV 6 186 X X × ×

(n,el)

[0, 100)meV 0 0
[100, 1000)meV 0 0

[1, 5) eV 0 0
[1, 5)MeV 2 17 X X X ×
[5, 10)MeV 1 20 X X X X

[10, 20)MeV 1 18 X X X X

(n,2n)

[0, 100)meV 0 0
[100, 1000)meV 0 0

[1, 5) eV 0 0
[1, 5)MeV 0 0
[5, 10)MeV 3 17 × × × ×
[10, 20)MeV 4 18 X X × ×

(n,f)

[0, 100)meV 28 1542 X X X ×
[100, 1000)meV 12 1034 X X × ×

[1, 5) eV 12 1083 X X X X

[1, 5)MeV 12 300 X X X X

[5, 10)MeV 7 120 X X X X

[10, 20)MeV 15 121 X X X X

(n,γ)

[0, 100)meV 2 2 X X X X

[100, 1000)meV 0 0
[1, 5) eV 0 0

[1, 5)MeV 1 1 X X X X

[5, 10)MeV 0 0
[10, 20)MeV 0 0

Table 5: The number of experiments and experimental points in
each energy zone for 235U, and which zones are rejected for different
choices of Ptol. “×” means that a zone is rejected and “X” that a
zone is kept. The number of experiments and experimental points
refer to all those in EXFOR passing rule number 1 in Sec. 2.3.

Ptol [%]
# exp’s # points 1 5 10 50

(n,tot)

[0, 100)meV 17 178 X X X ×
[100, 1000)meV 9 279 × × × ×

[1, 5) eV 7 1910 × × × ×
[1, 5)MeV 13 2531 X X X X

[5, 10)MeV 10 661 X X X ×
[10, 20)MeV 9 305 X X X ×

(n,el)

[0, 100)meV 3 17 × × × ×
[100, 1000)meV 1 17 X X X ×

[1, 5) eV 1 1 X X X X

[1, 5)MeV 2 2 X X X X

[5, 10)MeV 0 0
[10, 20)MeV 0 0

(n,2n)

[0, 100)meV 0 0
[100, 1000)meV 0 0

[1, 5) eV 0 0
[1, 5)MeV 0 0
[5, 10)MeV 2 11 X X X ×
[10, 20)MeV 2 9 X X × ×

(n,f)

[0, 100)meV 27 2224 X X X X

[100, 1000)meV 18 1966 X X X X

[1, 5) eV 16 3040 X X X X

[1, 5)MeV 35 527 X X X X

[5, 10)MeV 15 183 X X X X

[10, 20)MeV 22 140 X X X X

(n,γ)

[0, 100)meV 4 4 X X X X

[100, 1000)meV 0 0
[1, 5) eV 0 0

[1, 5)MeV 1 1 X X X X

[5, 10)MeV 0 0
[10, 20)MeV 0 0

Table 6: The number of experiments and experimental points in
each energy zone for 238U, and which zones are rejected for different
choices of Ptol. “×” means that a zone is rejected and “X” that a
zone is kept. The number of experiments and experimental points
refer to all those in EXFOR passing rule number 1 in Sec. 2.3.

Ptol [%]
# exp’s # points 1 5 10 50

(n,tot)

[0, 100)meV 0 0
[100, 1000)meV 1 13 X X X X

[1, 5) eV 1 28 X X X X

[1, 5)MeV 13 1971 × × × ×
[5, 10)MeV 7 564 X X X X

[10, 20)MeV 7 261 X X X X

(n,el)

[0, 100)meV 0 0
[100, 1000)meV 0 0

[1, 5) eV 0 0
[1, 5)MeV 4 10 X X X ×
[5, 10)MeV 2 2 X X X ×
[10, 20)MeV 3 3 X X X X

(n,2n)

[0, 100)meV 0 0
[100, 1000)meV 0 0

[1, 5) eV 0 0
[1, 5)MeV 0 0
[5, 10)MeV 5 26 X X X X

[10, 20)MeV 19 99 X X X X

(n,f)

[0, 100)meV 1 1 X X X ×
[100, 1000)meV 0 0

[1, 5) eV 0 0
[1, 5)MeV 15 574 X X X X

[5, 10)MeV 8 112 X X X X

[10, 20)MeV 24 137 X × × ×

(n,γ)

[0, 100)meV 12 155 X X X X

[100, 1000)meV 0 0
[1, 5) eV 2 10 X X X X

[1, 5)MeV 7 33 X X X X

[5, 10)MeV 2 8 X X X X

[10, 20)MeV 5 16 X X X X

Table 7: The number of experiments and experimental points in
each energy zone for 56Fe, and which zones are rejected for different
choices of Ptol. “×” means that a zone is rejected and “X” that a
zone is kept. The number of experiments and experimental points
refer to all those in EXFOR passing rule number 1 in Sec. 2.3.

Ptol [%]
# exp’s # points 1 5 10 50

(n,tot)

[0, 100)meV 1 58 × × × ×
[100, 1000)meV 1 15 X X X ×

[1, 5) eV 2 4 X X X X

[1, 5)MeV 2 4671 × × × ×
[5, 10)MeV 3 1065 X X × ×
[10, 20)MeV 3 625 X X X ×

(n,el)

[0, 100)meV 1 1 X X X X

[100, 1000)meV 0 0
[1, 5) eV 0 0

[1, 5)MeV 4 7 X X X ×
[5, 10)MeV 2 8 X X X X

[10, 20)MeV 0 0

(n,2n)

[0, 100)meV 0 0
[100, 1000)meV 0 0

[1, 5) eV 0 0
[1, 5)MeV 0 0
[5, 10)MeV 0 0
[10, 20)MeV 5 13 X X X X

(n,γ)

[0, 100)meV 3 61 X X X X

[100, 1000)meV 1 28 X X X X

[1, 5) eV 1 19 X X × ×
[1, 5)MeV 0 0
[5, 10)MeV 0 0
[10, 20)MeV 1 1 × × × ×

(n,n′)

[0, 100)meV 0 0
[100, 1000)meV 0 0

[1, 5) eV 0 0
[1, 5)MeV 2 7 X X X X

[5, 10)MeV 0 0
[10, 20)MeV 3 3 X X X X
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4.3. Weights for other libraries

Table 8 shows the values for the likelihood functions
that are obtained with the methodology of this paper for
a selection of ND libraries other than the considered ran-
dom files. The values are normalized to the maximum like-
lihood function obtained for the random ND files. Thus,
values greater than 1 indicate a better agreement to the
experiments for the considered library compared to best
random file and vice versa. Note that “better agreement
to the experiments” means to the automatic selection of
experiments made according to Secs. 2.3 and 2.5. Since
outliers are identified based on the deviation to the random
files, the random files may obtain unjustly large likelihood
function values compared to the other libraries.

For E ≥ 1MeV, ENDF/B-VII.1 succeeds quite well,
with higher likelihood than any of the random files, except
for 235U, where no library seems to compete with the best
random file. CENDL 3.1 also gets higher likelihood than
the random files for 239Pu and 238U in this energy range,
note the really large value for 239Pu.

For E < 5 eV, none of the libraries beats the best ran-
dom file, even though the difference is pretty small in the
cases of 238U and 56Fe, where the difference between the
different libraries are really small, too.

JEFF 3.1, JENDL 4.0 and TENDL 2013 all have lower
likelihood values than the best random files in all cases.

4.4. The shielding fuel assemblies (SFA)

Since there has been no previous studies of the 56Fe
data uncertainties in the SFA, these results (using the de-
fault weights) are studied with some more detail here.

In Fig. 10, the high energy flux at the reactor pressure
vessel and the relative uncertainty in the same quantity
due to 56Fe data is seen. Where the weld crosses the planes
x = 0 and y = 0, the sensitive points that should be
protected by the SFA are located, and one can see that
the flux is lower here than at greater z values for the same
azimuthal angles. The flux pattern agrees with that found
in Ref. [38] (where it is only reported along the weld).

The relative uncertainty due to 56Fe data is (except
for local variations at the top of the pressure vessel due
to large random uncertainty), greatest in the vicinity of
the sensitive points, where it is about 2 − 3%; this is not
surprising since this is where the 56Fe data is expected to
be most important. With full variation of the random files,
the unweighted uncertainty of the flux due to 56Fe data is
2.5± 0.2% and 2.6± 0.2% at the sensitive point at y = 0
and at x = 0, respectively. The corresponding unweighted
values using partial variations are 3.1 ± 0.2% and 2.8 ±
0.2%. That the ND uncertainty estimates increase using
partial variations is surprising, since less ND is varied; this
is discussed in Sec. 5.7.

Applying the default weights (and using partial varia-
tion), ND uncertainties of 3.1± 0.3% and 2.6± 0.3% are
obtained. Since the uncertainties are effectively unaffected
by the weights from experimental data, there is a risk that
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Figure 11: The distribution of the high energy flux (E > 1MeV) at a
sensitive point of the SFA application (at the weld and y = 0) using
partial variations of the 56Fe data, with and without the default
random file weights.

the true 56Fe data uncertainty is greater, as discussed in
Sec. 5.1.

5. Discussion

5.1. Possible explanations for constant likelihood functions

For many of the nuclides, applications and choices of
EI parameters, the weights had almost no effect on the
integral distributions, e.g. for the SFA, see Fig. 11. This
effectively means that the distributions are entirely deter-
mined by the prior distribution, and that the likelihood
function is practically constant with respect to the stud-
ied integral quantity in the part of the parameter space
covered by the prior distribution.

One possible reason for this is that the distribution
used as prior covers a much too small part of the parame-
ter space, relative to the experimental data set and its un-
certainties, such that the experimental data cannot limit
the distribution anymore. There is an obvious risk for this,
since the random files used as prior files are not intended
to describe prior distributions. In Ref. [18], a very wide
prior distribution of model parameters is taken, validated
against coverage of all EXFOR data using global nuclear
model calculations, after which zoom-in to nuclide-specific
data takes place to obtain a reliable posterior. There, this
is only applied to differential cross sections, but it can
equally well be applied to entire nuclear data libraries and
applied reactor calculations.

Another possibility is that the application is sensitive
to resonances (which are in the considered energy region)
and that the resonances are so many that weighting of full
random files becomes an inefficient way to limit them.

It is also possible that the preliminary algorithms for
automatic selection of data or generation of experimental
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Table 8: The likelihood functions for a selection of nuclear data libraries for each nuclide and energy range, relative to the maximum likelihood
obtained for the random files. For values less than 10−10, the value is rounded to the nearest power of 10. The greatest weight for each case
(if greater than the maximum likelihood for the random files) is highlighted with a boldface font.

239Pu 235U 238U 56Fe
Library \E ≥ 1MeV < 5 eV ≥ 1MeV < 5 eV ≥ 1MeV < 5 eV ≥ 1MeV < 5 eV

ENDF/B-VII.1 12 10−153 3.0·10−6 6.5·10−7
3.5 .53 69 .18

JEFF 3.1 .028 < 10−300 7.7·10−5 6.5·10−7 .011 .49 10−16 .16

JENDL 4.0 2.2·10−5 < 10−300 10−16 6.5·10−7 8.4·10−4 .52 10−35 .18
CENDL 3.1 8.0·104 10−44 3.1·10−5 6.3·10−7 4.7 .53 10−19 .61

TENDL 2013 4.5·10−5 10−153 < 10−300 6.6·10−7 8.3·10−5 .53 10−22 .18
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Figure 10: High energy neutron flux at the reactor pressure vessel in the SFA model, and the corresponding propagated 56Fe data uncertainty.
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covariance matrices, or any other limitation of the method
such as disregarding model defects (i.e. the disagreement
between reality and the nuclear models using the best pos-
sible parameters), can cause the practically constant like-
lihood functions by effectively overestimating the experi-
mental uncertainties.

5.2. Cases with few significant files

In other cases than those discussed in Sec. 5.1, the file
weights have a very large impact on the results; only a
small number of files get significant weights. This may
give the result that the ND uncertainty is estimated to be
zero. Actually, the cases that seem to be most sensitive to
variation of the EI parameters are such cases, and what
appears to be strong sensitivities can simply be a result
of sensitivity to random fluctuations – if a change in an
EI parameter gives a change in the weight of one of the
very few significantly “heavy” files, this may cause large
changes in the estimates of both central value and ND un-
certainty, see e.g. Fig. 4. Therefore, one cannot draw any
conclusions on the actual sensitivity to the EI parameters
of the estimates for these systems.

Now, there can be several reasons for the few signifi-
cant files. Assuming that the nuclear reaction models are
correct, there are two possibilities:

• The parameters may be sampled from a region of
the parameter space where the likelihood is low, such
that all files get large χ2-values, which leads to large
absolute differences between the different χ2-values
which in turn leads to very large relative differences
between the likelihood function values, due to the
exponential behavior of the likelihood function, see
Eq. (1).

• The parameters are sampled from a “too” large re-
gion of the parameter space, giving a bad resolution
in the region where the likelihood is large.

In other words, the results are poorly converged; this may
be resolved by having a much larger set of random ND
files, but this is a time consuming solution. Instead, the
parameter distribution to sample from may have to be de-
termined using feedback from the likelihood function val-
ues, possibly using a Markov Chain Monte Carlo algorithm
such as the Metropolis-Hastings algorithm, as is done for
UMC-G in [40].

However, the above assumed that the nuclear reaction
models are perfect, and this cannot be said to be the case.
Even with the best possible set of model parameters, there
can still be a mismatch between theory and experiments
which is so large that a problem similar the former of the
two above applies. The observed cases with very few sig-
nificant file weights are therefore another argument to pri-
oritize the treatment of model defects in the future de-
velopment of the methodology, possibly inspired by Refs.
[41, 42].

The few significantly weighted files could be helped by
a practical remedy used in Refs [15] and [18]: to normalize
the χ2

k used to compute the likelihood in 1 by the minimum
χ2
k. The statistical interpretation of the uncertainties re-

sulting from this is unclear, however. Normalization by a
number related to the reduced χ2 could also be considered,
since we would expect this to be close to 1 for experimental
data consistent to the model predictions. This is, however,
outside the scope of the present work.

5.3. Saturation effect when increasing correlated uncer-
tainty

In Sec. 4.2.1 it was observed that the likelihood func-
tions for each file seem to converge towards some limits
as σfully correlated increases. This may come as a surprise,
since one normally expects the impact of the experiments
to decrease as their uncertainties increase. This can be
explained by the fact that even if a larger σfully correlated

allows for a larger offset between theory and experiments,
it does not allow for a larger deviation in shape for each
reaction channel. An example in Appendix B illustrates
this.

Similar reasoning may also help to understand the nar-
rowing of the weight distributions with increasing σfully correlated

which also is observed in Sec. 4.2.1 for some cases. Imagine
a theoretical curve which has a shape which agrees really
good with the experiments, but at the same time a large
offset with respect to the experiments. This file will have
a low weight as long as the correlated uncertainties are
moderate. As σfully correlated increases, all files get larger
likelihood functions, but as σfully correlated continues to in-
crease, more and more files have their likelihood functions
saturated since their shape only agrees up to a certain ex-
tent. However, the likelihood function for the file with
the good shape and the large offset will continue to in-
crease longer than the average file and possibly it will end
up being the file with the by far greatest weight. Since
the weights are studied relatively to the maximum weight,
this can lead to a decreasing average weight, which also is
observed in the example in Appendix B.

5.4. Outliers and rejection of energy zones

Outlying experiments are identified by the deviation
to the data in the random files, and as pointed out in
Sec. 2.5, this is not appropriate. Automatic rejection or
down-weighting of experimental data is difficult and (if
possible at all) it should be based on deviation between
different experiments and not between experiments and
theory, since erroneous theory never can be disproved us-
ing such a scheme. Possibly, a development towards a more
sound automatic treatment of outliers could be inspired by
Ref. [43]. If it is found necessary to retreat to some manual
selection of experiments, this should be done using clear
and transparent rules to reduce personal judgment to a
minimum and enable reproducible results.

The rejection of energy zones used in this work suffers
from the same problem as the identification and treatment
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of outliers, but the motivation for it has a different na-
ture; it is rather the defects in the model than unknown
systematic experimental errors that cause the deviation in
this case. This makes the rejection of energy zones even
more problematic than the rejection of experiments, and
it shall be abandoned in future studies. To reject an en-
ergy zone if half of the experimental subsets are judged as
outliers also introduces some extra arbitrariness which is
not investigated in this work. The rejection can partially
be replaced by covering a greater part of the parameter
space in the prior distribution of the random files, but it
may prove necessary to also use experimental data more
directly, for example along the lines of Ref. [42].

5.5. Sensitivity to the EXFOR interpretation parameters

It is seen in Sec. 4 that many of the different EI param-
eters do not have a very strong impact on the propagated
ND uncertainties nor on the distribution of the weights,
as long as they are within reasonable ranges. Many ap-
plications are generally insensitive to the weighting (as
discussed in Sec. 5.1), why the effects of these parame-
ters may not show, but in many cases the distributions of
the weights seem not to be affected strongly either, judging
from the average weights. The cases which appear as most
sensitive to the EI parameters are primarily the thermal
systems with 239Pu or 235U varied. However (as discussed
in Sec. 5.2), there are very few significant weights for the
random files in these cases, and therefore the results are
very sensitive to random fluctuations and no conclusions
can be drawn regarding the actual sensitivity to the EI
parameters for the propagated results.

By comparing the results of this work with the re-
sults in Ref. [19] where several of the EI parameters had
other default values and the outliers and energy zones were
treated somewhat differently, one finds really substantial
differences. For example, many more 235U random files ob-
tain a significant weight using the rules of Ref. [19]. Thus,
even if the results seem not to be that sensitive to the
choice of one single EI parameter at a time, they indeed
have an impact as a group and they should be discussed
and motivated more carefully in the future. Also, some of
them should be replaced by more accurate estimates of cor-
responding uncertainties and correlations; for example, the
uncertainty correlated over each reaction channel should at
least partially be replaced by an analysis of the true cor-
relations (identifying experiments using the same monitor
cross section, etc.). Also, one could obtain a statistical
distribution of the uncertainties of all measurements ever
made for a particular reaction channel and use that to as-
sign uncertainties to incomplete data. Such information is
available in the EXFOR validation of Ref. [44].

5.6. Statistical significance of differences

In a study like this, where one is looking for differ-
ences between several different pairs of observations, there
is a risk of finding “statistically significant” differences

even though they are due to normal statistical fluctua-
tions. For example, comparing N independent pairs with
a type 1 error rate of α (significance level of 1 − α) in
each comparison, can give a type 1 error rate of up to
1 − (1 − α)N (the Bonferroni inequality [45]). Simply
phrased, some significant deviations will be observed by
chance if you study enough cases. In classical Analysis
of Variance (ANOVA), such pairwise comparisons are per-
formed using e.g. Tukey’s method [45] which handles the
inflated error rate correctly. In this study, there are strong
correlations between different pairs (e.g. for the propa-
gated ND uncertainty compared for σfully correlated = 0%
and σfully correlated = 1% versus σfully correlated = 0% and
σfully correlated = 3%) and there are attempts to identify
trends, and therefore the inflated error rate is taken into
account quite informally by stating that a difference is sta-
tistically significant if the values ±2 standard deviations
do not overlap (which would correspond to α ≈ 0.5% for
each comparison assuming normal distributions and simi-
lar uncertainties).

5.7. Miscellaneous comments

• As briefly discussed in Ref. [19], the efficiency of
the methodology can be improved using a Russian
Roulette methodology, randomly discarding light-weight
random files before simulations without introducing
a bias, similar to the removal of light-weight particles
in Monte Carlo transport codes. Such a methodol-
ogy can also be used to obtain implicitly weighted
random files which all have the same weight, which
simplifies the understanding for an end user which
would not have to bother about weights.

• No renormalization of EXFOR has been applied. That
is, cross sections that are measured relatively to some
reference cross section have been used as they stand
in EXFOR, even though it is a good idea to obtain
the original ratios and compute new values using the
currently best estimate for the reference cross sec-
tion. Such a renormalization would probably reduce
the overall error in data but it would also introduce
even more experimental correlations. However, if the
renormalization is handled, the resulting correlations
can be estimated simultaneously.

• As can be seen in Table 3 and in Sec. 4.4, the esti-
mated ND uncertainty for the fast flux for the SFA is
greater using partial variations than using variation
of the full random files, e.g., 3.1±0.2% compared to
2.5±0.2%. In other words, the uncertainty is greater
when less ND is varied, which can be surprising. It
would rather be expected to get very similar results
as with full variations since only flux with neutron
energy E ≥ 1MeV is included, and the partial vari-
ations consider all cross sections with such energies.

Considering the uncertainty of the uncertainty, one
can argue that the difference is likely to be this large
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by chance. However, the same ND random files are
used in both cases, so even if the uncertainty of the
estimates is “large enough”, the values are strongly
correlated. The uncertainty of the uncertainty which
can cause differences between these values by chance
should be the part of the uncertainty which is due
the to Monte Carlo code statistics. Taking a closer
look at the computations it turns out that the uncer-
tainty of uncertainty from Monte Carlo code statis-
tics is less than 1/3 of the total uncertainty of uncer-
tainty, making it much less likely that the observed
difference is only by chance.

A possible explanation is a compensating effect in
the angular distributions which is excluded when not
varying the angular distributions, i.e., 56Fe cross sec-
tions which give better shielding (typically higher
cross sections) are correlated to angular distributions
which give worse shielding (more directed in the for-
ward direction), and vice versa. When this negative
correlation is removed by fixing the angular distri-
butions, the ND uncertainty increases.

• From comparing the results with partial variation
and variation of full random files, it is clear that
other nuclear data than cross section data below or
above the resonance range (varied in the partial vari-
ations) can have a large impact in some cases, espe-
cially for ELECTRA and the pin cell varying 238U. In
particular, the treatment of resonance parameter dis-
tributions shall be revisited to ensure a statistically
rigorous treatment, also using other methodologies
than file weighting since this may be very inefficient
due to the large number of resonance parameters.

6. Conclusions and outlook

The study presented in this paper further explores the
incorporation of experimental data into TMC by assign-
ing weights to the random files as suggested in Ref. [19],
i.e., by combining TMC and UMC-B [17]. Experimental
covariance matrix estimates are automatically generated
from EXFOR using a set of reviewable rules, which enables
taking estimated experimental correlations into account in
the computation of weights on a large scale. The rules
include, e.g., a coarse guess for typical cross-experimental
correlations and a translation of the uncertainty due to the
combination of energy resolution and energy uncertainty
into cross section uncertainty. The sensitivities to certain
different choices made in the interpretation of EXFOR are
also studied.

A thorough explanation of the file weighting method-
ology is provided, as well as a proof that it is a consistent
implementation of Bayes’ theorem. Further, a general way
to estimate the uncertainty of the uncertainty, taking file
weights into account, is suggested and implemented.

The methodology is applied to assess propagated ND
uncertainties in the integral results for several applications,

covering both fast and thermal systems. One of the con-
sidered systems is the shielding fuel assemblies which are
designed to protect the reactor pressure vessel at Ringhals
3 and 4 in Sweden from the fast neutron flux – an appli-
cation which has not previously been studied with respect
to ND uncertainty.

The results do depend on the choices made for the EX-
FOR interpretation and the effects that are observed are
understood and explained, but the sensitivity seems not
to be very strong from what can be seen in these results.
This can partially be because some of the applications are
generally insensitive to the weighting applied here, which
in turn can be explained by that the used random files are
not intended to describe prior distributions and cover a
too small part of the parameter space. For other nuclides
and energy ranges, only a very few weights are significantly
large, which gives practical problems with resolution and
random fluctuations (bad convergence). The bad conver-
gence can also be due to the parameter distributions used
as priors or due to model defects. It is either necessary
to generate new prior distributions or (more likely) to use
feedback from the likelihood directly to search for a param-
eter distribution, possibly using a Markov Chain Monte
Carlo algorithm. Further, model defects need to be taken
into account, possibly along the lines of Ref. [42]. Also,
the probability distribution of the resonance parameters
shall be studied.

The results are strongly affected by the automatic re-
jection of outliers, and this treatment needs to be further
developed and investigated; not the least, it is important
that experimental data is not rejected on the basis of de-
viation to (possibly erroneous) models. The related rejec-
tion of energy zones shall be abandoned in favor of more
motivated parameter distributions and a sound treatment
of model defects. This rejection may, however, help us
to identify for which reaction channels and energy ranges
the nuclear models and experiments agree the least, i.e.,
which parts of the nuclear modeling that needs the most
improvement, see Tables 4 to 7.

It is further observed that the effect of increasing a fully
correlated uncertainty becomes saturated – all weights con-
verge towards certain limits. This effect is explained by
that the fully correlated uncertainty allows for larger off-
sets between theory and experiments but not for larger
deviation in shape.

The uncertainty due to 56Fe data in the flux at the sen-
sitive points in the Shielding Fuel Assemblies from Ref. [38]
is 2.5 ± 0.2%, not using any weights but with the varia-
tion of the full random files. These values are not affected
much by the weights, why there is reason to consider the
possibility that a too small part of the parameter space is
covered and that the true uncertainties are greater.

In summary, we conclude that to make the best use
of the wealth of information in EXFOR database, a con-
tinuous research effort has to be pursued, both regarding
better modeling and by establishing better motivated ex-
perimental covariance information. This will allow us to
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approach transparent, highly automatized and statistically
rigorous ND uncertainty estimates.
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Appendix A. Eq. (7) gives a consistent estimate

This whole section adapts the notation of Sec. 2. It

is important to motivate why an estimator, such as q̂j in
Eq. (7), is “good”, in some sense. For example, for an
estimator θ∗n of some quantity θ which depends on the
sample size n, it can be considered important that the
estimator is consistent, i.e., that θ∗n converges in proba-
bility towards θ as n → ∞, meaning that for each ε > 0,
P (|θ∗n − θ| > ε) → 0 as n → ∞ [46].

To show consistency of an estimator θ∗n of a quantity
θ, depending on the sample size n, it suffices to show [46]

• that the estimate is asymptotically unbiased, i.e.
that

lim
n→∞

〈θ∗n〉 = θ

• and that the variance of the estimator approaches
zero with increasing sample size, i.e.,

lim
n→∞

V (θ∗n) = 0.

In Sec. Appendix A.1, both these features of q̂j in Eq. (7)
are motivated in an intuitive, but mathematically dubious,
way. In Sec. Appendix A.3, the asymptotic unbiasedness is
formally proven. Together with Sec. Appendix A.4, where
it is shown that limn→∞ V (θ∗n) = 0, this shows consistency
according to the above.

In the formal proof, it is assumed that V
([

qj (p)
]2)

is

finite and that the expected values
〈[

qj (p)
]2〉

and
〈
qj (p)

〉
f(p|x)

exist, where the latter is the expected value of qj (p) given
x, i.e. with respect to the PDF f(p|x). One sufficient
condition for all these assumptions is that q (p) can be
bounded below and above. In the example q = keff , this
is easily seen to be the case from physics, since keff ≥ 0
and limited above at least by the number of neutrons in a
nuclide.

Appendix A.1. Informally motivating that the estimate is
consistent

With wk = CL(p(k);x) and C = 1/
∑n

κ=1 L(p
(κ);x),

Eq. (7) can be rewritten as

q̂j (p) =

n∑

k=1

CL(p(k);x)qj
(
p(k)

)
. (A.1)

Assuming that n is large enough so that C can be as-
sumed constant with respect to a particular p(k) (this is
the mathematically dubious step), and using that the p(k)

are sampled from f0(p), the expected value of q̂j becomes

〈
q̂j
〉
= C

n∑

k=1

∫
L(p(k);x)qj(p(k))f0(p

(k)) dp(k) =

Cn

∫
L(p;x)qj(p)f0(p) dp.

(A.2)
Since Cn = n/

∑n
κ=1 L(p

(κ);x) → 1/ 〈L(p;x)〉 as n → ∞,
this expression approaches unity for j = 0 since f0(p) is a
PDF. In other words, CnL(p;x)f0(p) approaches a PDF
which obviously is proportional to L(p;x)f0(p), i.e.

CnL(p;x)f0(p) → f(p|x) as n → ∞, (A.3)

giving
〈
q̂j
〉
→
〈
qj
〉
f(p|x)

, where the subscript f(p|x) de-

notes that this is the expected value of qj with respect to

the PDF f(p|x). In words, q̂j is an asymptotically unbi-
ased estimate of the j’th moment of q given x.

Simultaneously, the variance of q̂j approaches 0 anal-
ogously to the variance of a simple mean value. Together

with the asymptotic unbiasedness, this yields that q̂j is a
consistent estimate of

〈
qj
〉
[46]. �

Appendix A.2. Some prerequisites for the formal proof

The following results will be used several times in the
proofs.

• The limit of a product of sequences equals the prod-
uct of the corresponding limits, provided that the
limits exist [47]. That is, if an and bn are some se-
quences, and if there exist numbers A and B such
that limn→∞ an = A and limn→∞ bn = B, then

lim
n→∞

anbn = AB. (A.4)

• Slutsky’s theorem [48]: If an estimator θ̂n converges
in probability to θ as n → ∞, and the function g
is continuous at θ and independent of n, then g(θ̂n)
converges in probability to g(θ), i.e.,

θ̂n
p
−→ θ ⇒ g(θ̂n)

p
−→ g(θ). (A.5)

• The squeeze theorem for sequences [49]: If, for N
large enough, the sequences an, bn and cn fulfill an ≤
bn ≤ cn for n ≥ N , and limn→∞ an = limn→∞ cn =
L , then

lim
n→∞

bn = L. (A.6)
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Appendix A.3. Proving that the estimate is asymptotically
unbiased

From the definition of the likelihood function, it can be
seen that

0 < L
(
p(k);x

)
≤

1

(2π)m/2
√
det (CE)

=: α, (A.7)

where “=:” indicates that α is defined by this equation.
Thus,

1

α+
∑

κ 6=k L(p
(κ);x)

≤
1∑n

κ=1 L(p
(κ);x)

≤

1∑
κ 6=k L(p

(κ);x)

(A.8)

where κ 6= k is short notation for κ ∈ {1, 2, ..., n}\k. From

the definition of q̂j(p) in Eq. (7), one thus obtains

n∑

k=1

L(p(k);x)qj(p(k))

α+
∑

κ 6=k L(p
(κ);x)

≤ q̂j(p) ≤
n∑

k=1

L(p(k);x)qj(p(k))∑
κ 6=k L(p

(κ);x)
.

(A.9)

Taking expectation values on all sides,

n∑

k=1

〈
1

α+
∑

κ 6=k L(p
(κ);x)

〉

∫
L(p(k);x)qj(p(k))f0(p

(k)) dp(k) ≤

〈
q̂j(p)

〉
≤

n∑

k=1

〈
1∑

κ 6=k L(p
(κ);x)

〉

∫
L(p(k);x)qj(p(k))f0(p

(k)) dp(k).

(A.10)

The separation of the numerators and the denominators
in each summand is possible since the denominators are
constant with respect to p(k) and the numerators are con-
stant with respect to p(κ) for κ 6= k. Since all terms in
the summands are the same (the p(k) are sampled from
the same distribution, namely f0(p)), one may omit the
superscript (k), yielding
〈

n
∑n−1

κ=1

(
α

n−1 + L(p(κ);x)
)
〉∫

L(p;x)qj(p)f0(p) dp ≤

〈
q̂j(p)

〉
≤

〈
n

∑n−1
κ=1 L(p

(κ);x)

〉∫
L(p;x)qj(p)f0(p) dp.

(A.11)
Since, by definition, f(p|x) ∝ L(p;x)f0(p), the expecta-
tion value of qj given x (it has been assumed to exist)
is

〈
qj
〉
f(p|x)

=

∫
qj(p)L(p;x)f0(p) dp∫

L(p;x)f0(p) dp
=

∫
qj(p)L(p;x)f0(p) dp

〈L(p;x)〉
,

(A.12)

where the denominator is necessary to normalize L(p;x)f0(p)
into a PDF. Solving for the integral in the numerator,
inserting the result into Eq. (A.11) and rewriting n as
n(n− 1)/(n− 1), one obtains

n

n− 1

〈
n− 1

∑n−1
κ=1

(
α

n−1 + L(p(κ);x)
)
〉
〈L(p;x)〉

〈
qj
〉
f(p|x)

≤

〈
q̂j(p)

〉
≤

n

n− 1

〈
n− 1

∑n−1
κ=1 L(p

(κ);x)

〉
〈L(p;x)〉

〈
qj
〉
f(p|x)

,

(A.13)
Now, since the mean value of a random sample is a con-
sistent estimate of the expectation value of the underlying
random variable [46], Slutsky’s theorem (Eq. (A.5)) im-
plies that

lim
n→∞

〈
1

Ȳn

〉
=

1

〈Y 〉
, (A.14)

where Ȳn = 1
n

∑n
k=1 Yk and the Yk are independent and

distributed as Y . Consequently, by identifying the expres-
sions as expectation values of reciprocals of mean values,
it can be seen that

lim
n→∞

〈
n− 1

∑n−1
κ=1

(
α

n−1 + L(p(κ);x)
)
〉

=

lim
n→∞

1〈
α

n−1 + L(p;x)
〉 =

1

〈L(p;x)〉
,

(A.15)

and

lim
n→∞

〈
n− 1

∑n−1
κ=1

(
L(p(κ);x)

)
〉

=
1

〈L(p;x)〉
. (A.16)

Applying these equalities to the inequalities of Eq. (A.13),
the squeeze theorem for sequences (Eq. (A.6)) gives

lim
n→∞

〈
q̂j(p)

〉
=
〈
qj
〉
f(p|x)

, (A.17)

also using that limn→∞
n

n−1 = 1 and the result in Eq. (A.4).
Thus, the estimate in Eq. (7) is asymptotically unbiased.
�

Appendix A.4. Proving that the variance approaches zero

It is well-known that [46]

C(Y 2, Z2) =
〈
Y 2Z2

〉
−
〈
Y 2
〉 〈

Z2
〉
, (A.18)

where C(Y 2, Z2) denotes the covariance of the random
variables Y 2 and Z2. Further [46],

V (Y Z) =
〈
Y 2Z2

〉
− 〈Y Z〉2 ≤

〈
Y 2Z2

〉
. (A.19)

Solving Eq. (A.18) for
〈
Y 2Z2

〉
it is thus seen that the

variance of the product of two possibly correlated random
variables Y and Z can be bounded as

V (Y Z) ≤ C(Y 2, Z2) +
〈
Y 2
〉 〈

Z2
〉
≤=

√
V (Y 2)V (Z2) +

〈
Y 2
〉 〈

Z2
〉
,

(A.20)
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noting that C(Y 2, Z2) ≤
√
V (Y 2)V (Z2) [46]. Substitut-

ing Y to wk and Z to qj
(
p(k)

)
(from the summand of

Eq. (7)) yields

V
(
wkq

j
(
p(k)

))
≤

√
V (w2

k)V
([

qj
(
p(k)

)]2)
+
〈
w2

k

〉〈[
qj
(
p(k)

)]2〉
.

(A.21)
Now,

0 ≤
〈
w2

k

〉
=

〈(
L
(
p(k)

)
∑n

κ=1 L
(
p(κ)

)
)2〉

≤

〈(
L
(
p(k)

)
∑

κ 6=k L
(
p(κ)

)
)2〉

=

〈
1

(∑
κ 6=k L

(
p(κ)

))2

〉〈[
L
(
p(k)

)]2〉
,

(A.22)

again using that the numerator depends only on p(k) and
the denominator on p(κ) with κ 6= k. Multiplying with n
yields

0 ≤ n
〈
w2

k

〉
≤

〈(
n− 1∑

κ 6=k L
(
p(κ)

)
)2〉 n

〈[
L
(
p(k)

)]2〉

(n− 1)2
,

(A.23)
also multiplying both numerator and denominator with
(n − 1)2 to obtain the expected value of the reciprocal of
a squared mean value of the L(p(κ);x). With a similar
argument as in connection with Eqs. (A.14) and (A.15),
Slutsky’s theorem (Eq. (A.5)) gives

lim
n→∞

〈(
n− 1∑

κ 6=k L
(
p(κ)

)
)2〉

=
1

〈L(p;x)〉
2 . (A.24)

The expected values 〈L (p)〉 and
〈
[L (p)]

2
〉

exist since

L (p) is positive and bounded above (easily seen from the
definition of expected value). Thus, inserting Eq. (A.24)
into Eq. (A.23), using Eq. (A.4) and applying the squeeze
theorem for sequences (Eq. (A.6)) gives

lim
n→∞

n
〈
w2

k

〉
= 0. (A.25)

Analogously,

0 ≤ n2
〈
w4

k

〉
= n2

〈(
L
(
p(k)

)
∑n

κ=1 L
(
p(κ)

)
)4〉

≤

n2

〈(
L
(
p(k)

)
∑

κ 6=k L
(
p(κ)

)
)4〉

=

〈(
n− 1∑

κ 6=k L
(
p(κ)

)
)4〉 n2

〈[
L
(
p(k)

)]4〉

(n− 1)4
,

(A.26)

such that Slutsky’s theorem (Eq. (A.5)), the squeeze the-
orem (Eq. (A.6)) and Eq. (A.4) give

lim
n→∞

n2
〈
w4

k

〉
= 0. (A.27)

Observing that

0 ≤ n2V (w2
k) = n2

(〈
w4

k

〉
−
〈
w2

k

〉2)
≤ n2

〈
w4

k

〉
, (A.28)

one can conclude from the squeeze theorem (Eq. (A.6))
that

lim
n→∞

n2V (w2
k) = 0. (A.29)

Multiplying Eq. (A.21) with n gives

nV
(
wkq

j
(
p(k)

))
≤

√
n2V (w2

k)V
([

qj
(
p(k)

)]2)
+

n
〈
w2

k

〉〈[
qj
(
p(k)

)]2〉
.

(A.30)

Since it is assumed that V
([

qj
(
p(k)

)]2)
is finite and that

〈[
qj
(
p(k)

)]2〉
exists, the results in Eqs. (A.25) and (A.29),

together with the squeeze theorem (Eq. (A.6)) and Eq. (A.4),
yield

lim
n→∞

nV
(
wkq

j
(
p(k)

))
= 0, (A.31)

for any k ∈ {1, 2, ..., n}. Thus, taking the variance of
Eq. (7) gives

lim
n→∞

V
(
q̂j (p)

)
= lim

n→∞

n∑

k=1

V
(
wkq

j
(
p(k)

))
=

lim
n→∞

nV
(
wkq

j
(
p(k)

))∣∣∣
k∈{1,2,...,n}

= 0.

(A.32)

�

Appendix B. An example illustrating the satura-

tion effect

In this section, the likelihood function is here com-
puted analytically in the case of two experimental points,
i.e. using a 2 × 2 experimental covariance matrix, with
σfully correlated seen as a variable, here written as σf.c. to
save space. Further, the solution is applied to a simple
special case, where three linear “theoretical curves” are
compared.

We begin by describing the simple special case: Con-
sider a situation with two experimental points, X1 and
X2, for energies E = 1 eV and E = 2 eV, centered about
µ1 = 10mb and µ2 = 20mb, respectively, and with ran-
dom uncertainties of σ1 = σ2 = 10mb each. Further,
there is a fully correlated uncertainty σf.c. relative to the
central experimental values (which is variable here). We
have three candidates to theoretical curves which we want
to assign weights to, making use of X1 and X2, namely

22



 

 

0 1 2 3

0

20

40

60

“Experimental points”

“
C
ro
ss

se
ct
io
n
”
[m

b
a
rn
]

Energy E [eV]

a1E + b

a2E + b

a3E + b

Figure B.12: Fictive experimental points and theoretical cross sec-
tion curves as functions of neutron energy. The error bars denote
the random uncertainty only.

ςk(E) = akE + b, where a1 = 11mb/eV, a2 = 0, a3 =
−11mb/eV and b = 25mb. The three curves and the two
experimental points are seen in Fig. B.12. As one can see,
the curve ς1(E) is furthest away from the experimental
points but the shape of this curve agrees better with how
the experiments are related to each other.

Denoting the reference values for the relative uncer-
tainty c1 and c2 (in the code, these are the average the-
oretical values τ1 and τ2), respectively, the experimental
covariance matrix becomes

CE =

(
σ2
1 + c21σ

2
f.c. c1c2σ

2
f.c.

c1c2σ
2
f.c. σ2

2 + c22σ
2
f.c.

)
. (B.1)

If the inverse of CE exists, it is simple to find since it is
a 2 × 2 matrix. We start by finding the determinant, i.e.
[50],

det (CE) = (σ2
1 + c21σ

2
f.c.)(σ

2
2 + c22σ

2
f.c.)− (c1c2σ

2
f.c.)

2 =

σ2
1σ

2
2 + σ2

f.c.(c
2
1σ

2
2 + c22σ

2
1).

(B.2)
Since the determinant is non-zero if (and only if) σ1 6= 0
or σ2 6= 0, C−1

E exists under this condition [50], in which
case [50]

C
−1
E

=
1

σ2
1σ

2
2 + σ2

f.c.
(c21σ

2
2 + c22σ

2
1)

(

σ2
2 + c22σ

2
f.c.

−c1c2σ2
f.c.

−c1c2σ2
f.c.

σ2
1 + c21σ

2
f.c.

)

.

(B.3)

With an arbitrary difference vector x−τ = d = (d1, d2)
T =

(x1 − τ1, x2 − τ2)
T, we get that

χ2 = dT
C

−1
E d =

1

σ2
1σ

2
2 + σ2

f.c.(c
2
1σ

2
2 + c22σ

2
1)

(
d1 d2

)( σ2
2 + c22σ

2
f.c. −c1c2σ

2
f.c.

−c1c2σ
2
f.c. σ2

1 + c21σ
2
f.c.

)(
d1
d2

)
=

σ2
2d

2
1 + σ2

1d
2
2 + σ2

f.c. (c2d1 − c1d2)
2

σ2
1σ

2
2 + σ2

f.c.(c
2
1σ

2
2 + c22σ

2
1)

.

(B.4)
Now, consider the two extremes σf.c. = 0 and σf.c. → ∞.
For σf.c. = 0,

χ2 =
σ2
2d

2
1 + σ2

1d
2
2

σ2
1σ

2
2

=
2∑

i=1

d2i
σ2
i

,

i.e. one retains the expression for “the independent χ2”,
cf., Eq. (3).

For σf.c. → ∞,

lim
σf.c.→∞

χ2(σf.c.) =
(c2d1 − c1d2)

2

c21σ
2
2 + c22σ

2
1

,

i.e., a limit is indeed approached.
With the numerical values of the special case,

lim
σf.c.→∞

χ2(σf.c.) =
(d1 − d2)

2

200
.

and with d
(k)
i being the difference between the i’th ex-

perimental point and the k’th “theoretical curve”, d
(1)
1 =

−26, d
(1)
2 = −27, d

(2)
1 = −15, d

(2)
2 = −5, d

(2)
1 = −4 and

d
(2)
2 = 17, giving

lim
σf.c.→∞

χ2
1(σf.c.) =

1

200
,

lim
σf.c.→∞

χ2
2(σf.c.) =

100

200
,

lim
σf.c.→∞

χ2
3(σf.c.) =

441

200
.

This yields that the weights approachw1(∞) = 1, w2(∞) =
e−99/400 ≈ 0.7808 and w3(∞) = e−440/400 ≈ 0.3329, for
curve 1, 2 and 3, respectively.

In Fig. B.13 the weights are plotted as functions of
σf.c. when σf.c. ranges from 10−4 to 103. The χ2-values are
computed directly from the definition of χ2 in Eq. (B.4),
why the results can be seen as an error check; the values
for w(σf.c. → ∞) are indeed correct. Also, one can see
that σf.c. starts having a substantial impact on the weights
when it reaches a few %, and that the effect is saturated
when σf.c. reaches a few hundred %.
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H. Sjöstrand, P. Helgesson, B. Krzykacz-Hausmann, Efficient
use of Monte Carlo: Uncertainty propagation, Nuclear Science
and Engineering 177 (3) (2014) 337–349.

[22] A. Koning, et al., TALYS-1.8, User Manual, Nuclear Research
and Consultancy Group NRG (December 2015).

[23] J. Briesmeister, MCNP - a general Monte Carlo N-particle
transport code, version 4C, Tech. Rep. LA-13709-M, Los
Alamos National Laboratory (April 2000).

[24] A. Gut, An Intermediate Course in Probability, Springer-Verlag,
New York, 1995.

[25] C. Shannon, A mathematical theory of communication, The
Bell System Technical Journal (reprinted with corrections) 27
(1948) 379–523,626–656.

[26] E. Jaynes, Information theory and statistical mechanics, Phys-
ical Review 106 (1957) 620–630.

[27] F. Brown, A review of the best practices for Monte Carlo criti-
cality calculations, in: ANS NSCD-2009, Richland, WA, 2009.

[28] N. Otuka, et al., Experimental uncertainty and covariance in-
formation in EXFOR library, EPJ Web of Conferences 27.

[29] M. Taboga, Lectures on Probability Theory and Mathematical
Statistics, 2nd Edition, Amazon CreateSpace, 2012.

[30] P. Helgesson, H. Sjöstrand, A. Koning, J. Rydén, D. Rochman,
E. Alhassan, S. Pomp, Sampling of systematic errors to esti-
mate likelihood weights in nuclear data uncertainty propaga-
tion, Nuclear Instruments and Methods in Physics Research A
807 (2016) 137–149.

[31] R. MacFarlane, A. Kahler, Methods for processing ENDF/B-
VII with NJOY, Nuclear Data Sheets 111 (2010) 2739–2890.

[32] J. Leppänen, Serpent – a Continuous-energy Monte Carlo Re-
actor Physics Burnup Calculation Code, User’s Manual, VTT
Technical research centre of Finland (March 2013).
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