Work possibilities for ANDES/WP3 at NRG

D. Rochman and A.J. Koning

Nuclear Research and Consultancy Group,

NRG, Petten, The Netherlands

ANDES WP3 Meeting, Cadarache, September 2010

Contents

NRG

1 Goals:

 \implies Define the NRG work in the WP3 of ANDES

② 2 main possibilities:

⇒ uncertainties and/or Random search

③ Uncertainties

 \implies (1) Total Monte Carlo and (2) perturbation for crit-safety benchmarks

④ Random search:

 \implies Find the best ²³⁹Pu evaluation for a given set of benchmarks

- **⑤** Some examples
- **6** Conclusions

Possibilities at NRG

Our work is based on the "TALYS system". Different outcomes are possible.

(1) Possibilities at NRG: uncertainty propagation

- ① Obtain uncertainties for ANDES due to nuclear data uncertainties
- ⁽²⁾ Systematic approach, reliable and reproducable
- Solution (1): Total Monte Carlo

Solution (2): Perturbation method

 \implies MCNP+ Perturbation cards+covariance files

Total Monte Carlo: examples

For each random ENDF file, the benchmark calculation is performed with MCNP. At the end of the *n* calculations, *n* different k_{eff} values are obtained. In the obtained probability distribution of k_{eff} , the standard deviation σ_{total} reflects two different effects:

$$\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2.$$
(1)

Each random file is completely different than another one: nu-bar ("*MF1*"), resonance parameters ("*MF2*"), cross sections ("*MF3*"), but also *MF4*, *MF5* and *MF6*.

Examples of results for a few criticality benchmarks

10/20

Example of the *Random search* **on** ²³⁹**Pu**

- Use the "TALYS system" to create a single ²³⁹Pu evaluation close or equal to ENDF/B-VII.0 or JEFF-3.1.1
- Randomize all model parameters (resonances, nubar, fission neutron spectrum, TALYS parameters) to create *n* > 500 random ²³⁹Pu evaluations
- ③ Benchmarks the *n* files with the same set of criticality benchmarks
- ④ Select the best random file

12/20

Benchmarking: simple example with 6 keff benchmarks

Benchmarking: simple example with 6 k_{eff} benchmarks

Benchmarking: simple example with 6 k_{eff} benchmarks

Benchmarking: 6 k_{eff} benchmarks with random ²³⁹Pu

Table 1: List of plutonium benchmarks selected for the random search.

Name	Cases	Name	Cases	Name	Cases	Name	Cases
pmf1	1	pmf2	1	pmf5	1	pmf6	1
pmf8	1	pmf12	1	pmf13	1	pci1	1
pmi2	1	pst1	6	pst2	6	pst3	8
pst4	13	pst5	9	pst6	3	pst7	9
pst8	29	pst12	22	pmm1	6		

$$\chi^2 = \sum_{i=0}^n \frac{(C_i - E_i)^2}{C_i},$$
(2)

NRG

16/20

Plans for ANDES WP 3

Uncertainty and sensitivity analysis on a large set of criticality benchmarks

- Thermal and fast benchmarks
- Monte Carlo and perturbation methods
- Use libraries from WP2
- Other benchmarks

 \bigcirc Random search for the best χ^2 with a given set of benchmarks

- Define the benchmarks
- Equal weight ?
- Perform the search