

Nuclear data, uncertainties and their applications

Part 2: adjustment of nuclear data

D. Rochman

Nuclear Research and Consultancy Group,

NRG, Petten, The Netherlands

EXTEND school Budapest, September 2012

Contents

- ① What are nuclear data ? (Part 1)
- 2 Are they important ? (Part 1)
- **③** What are they ? (Part 1)
- **③** *How can they be produced ? (Part 1)*
- (**4**) Where are they used ? (Part 1)
- **5** Total Monte Carlo (TMCs) (Part 1)
- Applications: adjustment of nuclear data (*Part 2*)
- Applications: nuclear data and uncertainties for reactors and fuels (*Part 3*)
- Discussions

All slides can be found at:

ftp://ftp.nrg.eu/pub/www/talys/bib_rochman/presentation.html).

Monte Carlo Nuclear Data Adjustment: the Petten method

Optimum Search and find (the Petten method)

- Started in 2010
- Two publications so far
- Controversial (if understood at all)
- We believe this is the future of nuclear data evaluation work
- It might be the only way to sensibly improve C/E

The Petten method on ²³⁹Pu

- Use TALYS to create a single ²³⁹Pu evaluation close or equal to ENDF/B-VII.0 or JEFF-3.1.1
- Randomize all model parameters (resonances, nubar, fission neutron spectrum, TALYS parameters) to create 500 random ²³⁹Pu evaluations
- ③ Benchmarks the $n \ge 500$ files with the same set of criticality benchmarks
- ④ Select the best random file

Example: 100 benchmarks, 500 random files \implies 500 TALYS + NJOY and 100 \times 500 = 5 \cdot 10⁴ MCNP loops,

1.4 years on a single processor, or 5 days on 100 processors (3 GHz)

The Petten method: simple example with 6 k_{eff} benchmarks

	α
JEFF-3.1.1:	$1.14e^{-4}$
JENDL-3.3:	$1.71e^{-4}$
TENDL-2009:	$3.66e^{-4}$
ENDF/B-VI.8:	$1.72e^{-4}$
ENDF/B-VII.0:	$1.69e^{-4}$

$$\alpha = \sum_{i=0}^n \frac{(C_i - E_i)^2}{C_i},$$

D. Rochman – 5 / 35

The Petten method: simple example with 6 k_{eff} benchmarks

	α
JEFF-3.1.1:	$1.14e^{-4}$
JENDL-3.3:	$1.71e^{-4}$
TENDL-2009:	$3.66e^{-4}$
ENDF/B-VI.8:	$1.72e^{-4}$
ENDF/B-VII.0:	$1.69e^{-4}$
random 0:	$2.29e^{-4}$
random 1:	$13.4e^{-4}$

D. Rochman – 5 / 35

The Petten method:: 6 k_{eff} benchmarks with random ²³⁹Pu

D. Rochman – 6 / 35

Optimal cross sections (random file 193)

Optimal cross section (random file 193)

Optimal nu-bar (random file 193)

NRG

Table 1: List of plutonium benchmarks selected for the random search.

Name	Cases	Name	Cases	Name	Cases	Name	Cases
pmf1	1	pmf2	1	pmf5	1	pmf6	1
pmf8	1	pmf12	1	pmf13	1	pci1	1
pmi2	1	pst1	б	pst2	6	pst3	8
pst4	13	pst5	9	pst6	3	pst7	9
pst8	29	pst12	22	pmm1	6		

$$\chi^2 = \sum_{i=0}^n \frac{(C_i - E_i)^2}{C_i},\tag{1}$$

Results independent of the type of factor α , χ^2 ... or

$$F = 1 - 10^{\sqrt{\frac{1}{N}\sum(\log(E_i) - \log(C_i))^2}}$$

D. Rochman - 12 / 35

(2)

Does it work ?

- ① We have shown that it is possible to "*improve*" an existing evaluation
- 2 Many questions need to be addressed such as
 - ➡ Compensation
 - Uncertainty ranges
 - Benchmark list
- ③ 2nd example: fission neutron spectrum for ENDF/B-VII.0 ²³⁹Pu (pfns)

Total Monte Carlo *on pfns*+ selection \implies adjustment *of pfns*

(same benchmarks, keep ENDF/B-VII.0 constant except the pfns, MF5 MT18)

Example 2 on pfns of ²³⁹**Pu**

F values for random PFNS ²³⁹Pu evaluations

F values for random PFNS ²³⁹Pu evaluations

Budapest 2012 Part 2

D. Rochman – 19 / 35

Example 2 on pfns of ²³⁹**Pu with only 7 fast benchmarks**

Petten method: *best* ²³⁹**Pu for the ANDES project** Benchmarks ENDFB/-VII.1 JEFF-3.1 NRG ⁹⁵Mo, ⁵⁶Fe, ²³⁹Pu, ²⁸Si, ¹⁸²W + JEFF-3.1 1.015 September 15, 2011 at 15:41 ²³⁹Pu fast benchmarks 1.010 C/E 1.005 1.000 0.995 Print DINI

Name	weight	Name	weight	N	lame	weight	Name we	eight
hmf22	1	hmf60	1	h	mf67	2	hmf72	1
imf10	1	imf14	2	ir	nf1	8	mmf11	4
pmf13	1	pmf5	1	h	mi1	1	hmi6	4
hmt16	1	hmt6	9	h	mt8	1	hst10	4
hst13	4	hst32	1	h	st38	30	hst39	6
hst9	4	lct1	8	lo	xt10	9	lct16	9
lct17	10	lct19	3	lo	et2	5	lct3	9
lct5	9	lct51	9	lo	ct60	9	lmt1	1
lst18	6	pst3	8	C)ktavian-n	135	Oktavian	-γ 75
	Criticality benchmark total weight: 392							
Reaction	on E	nergy (MeV	7) weig	ht	Reaction	Energ	gy (MeV)	weight
⁶⁵ Cu(n	,el)	8	4		⁶³ Cu(n,el)		5	4
⁶⁵ Cu(n	,el)	10	4		63 Cu(n,el))	7	4
⁶⁵ Cu(n	,el)	11	4		63 Cu(n,el))	10	4
⁶⁵ Cu(n	ι,γ)	0.5	4		63 Cu(n, γ)		0.5	4
⁶⁵ Cu(n	ι,γ)	1.0	4		$^{63}Cu(n,\gamma)$		1.0	4
⁶⁵ Cu(n	ι,γ)	2.0	4		$^{63}Cu(n,\gamma)$		2.0	4
⁶⁵ Cu(n	,inl)	14.5	4		63 Cu(n, γ)		3.0	4
⁶⁵ Cu(n	,2n)	10.5	4		⁶³ Cu(n,inl	.)	13.5	4
⁶⁵ Cu(n	,2n)	12	4		⁶³ Cu(n,2n)	11.5	4
⁶⁵ Cu(n	,2n)	13	4		⁶³ Cu(n,2n)	20	4
⁶⁵ Cu(n	,2n)	15	4		· · · ·	, ,		
⁶⁵ Cu(n	,2n)	17	4					

Budapest 2012 Part 2

D. Rochman – 23 / 35

Petten method: Correlation factors (instead of sensitivity)

$$\rho_{xy} = \frac{\sum\limits_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{(n-1)s_x s_y}$$

with x_i the random cross sections, \overline{x} the average cross section, y_i the random k_{eff} , \overline{y} the average k_{eff} and s_x and s_y their standard deviations.

D. Rochman – 29 / 35

Petten method: Correlation factors (instead of sensitivity)

NRG

Table 2: Correlation factors between the Cu Oktavian neutron leakage benchmark and nuclear data (at given incident and outgoing energies).

E _{out} Oktavian	Reaction	E _{in} neutron	ρ_{xy}
7 MeV	⁶³ Cu(n,inl)	2.4 MeV	-0.13
7 MeV	⁶³ Cu(n,inl)	13 MeV	-0.35
7 MeV	${}^{63}Cu(n,2n)$	20 MeV	-0.13
7 MeV	⁶³ Cu(n,el)	7 MeV	0.17
7 MeV	⁶⁵ Cu(n,inl)	14 MeV	0.01
7 MeV	${}^{65}Cu(n,2n)$	11 MeV	0.01
7 MeV	65 Cu(n,el)	10 MeV	0.03
7 MeV	$^{65}Cu(n,\gamma)$	2 MeV	0.00

NRG

Petten method: Correlation factors (proportional to sensitivity)

٩G

Petten method: third (and last) example on thermal scattering data H in H₂O

Table 3: List of thermal benchmarks selected for the random search.

Name	Cases	Name	Cases
pst12	22	pst1	6
lct7	10	lct6	18
lst4	7	lmt1	1
ict3	2	hst32	1
hst42	8		

$$F = 10^{\sqrt{\frac{1}{N}\sum(\log(E_i) - \log(C_i))^2}}$$
(3)

RG

Petten method: Example on thermal scattering data H in H₂O

Budapest 2012 Part 2