

Nuclear data, uncertainties and their applications

Part 3: nuclear data uncertainties for reactors and fuels

D. Rochman

Nuclear Research and Consultancy Group,

NRG, Petten, The Netherlands

EXTEND school Budapest, September 2012

Contents

- ① What are nuclear data ? (Part 1)
- 2 Are they important ? (Part 1)
- **③** What are they ? (Part 1)
- **③** *How can they be produced ? (Part 1)*
- **④** Where are they used ? (Part 1)
- **5** Total Monte Carlo (TMCs) (Part 1)
- *Applications: adjustment of nuclear* (Part 2)
- Applications: nuclear data and uncertainties for reactors and fuels (*Part 3*)
- Discussions

All slides can be found at:

ftp://ftp.nrg.eu/pub/www/talys/bib_rochman/presentation.html).

D. Rochman – 2 / 66

General comments:

- l uncertainties are not errors (and vice versa),
- I uncertainties should now be given with every data (seems obvious ?),
- III they are related to risks, quality of work, perception, fear, safety...

Uncertainty \Leftrightarrow safety \Leftrightarrow professionalism

- ₩ True uncertainties do not exist ! They are the reflection of our knowledge and methods.
- III All the above for covariances
- Image: The importance of nuclear data uncertainties should be checked. If believed negligible, please prove it !

Nuclear data uncertainties

Nuclear data Uncertainty propagation

- reactors (k_{eff} , β_{eff} , void, Doppler, reaction rates, you name it),
- fuel storage (criticality),
- burn-up (inventory, radiotoxicity),
- transient behaviour...

TMC for nuclear data uncertainty propagation, what else ?

- \bigcirc (\bigcirc (\cdot) \bigcirc \bigcirc \bigcirc (\cdot, \cdot) (\cdot) (\cdot)
 - + No MF 32-35 (no 2 Gb files) but every possible cross correlation included
 - + No approximation but true probability distribution
 - + Only essential info for an evaluation is stored
 - + No perturbation code necessary, only "essential" codes
 - + Feedback to model parameters
 - + Fission yields and decay data included
 - + QA
 - Needs discipline to reproduce
 - Memory and computer time
 - Complexity for full reactor core calculation not fully investigated
 - Role of data centers would change

TMC for nuclear data uncertainty propagation

"In general, this paper will or will not be a breakthrough in methodology if the [practicality and robustness] can or can not be demonstrated.",

ANE Referee, May 2008

"What about actinides, what about real systems ?", JEFF &WPEC meetings, May-June 2008

TMC for nuclear data uncertainty propagation

"In general, this paper will or will not be a breakthrough in methodology if the [practicality and robustness] can or can not be demonstrated.", ANE Referee, May 2008

"What about actinides, what about real systems ?", JEFF &WPEC meetings, May-June 2008

Okay, let's go from academic solutions (\clubsuit) to mass/applied production (\checkmark) !

- TALYS calculation + Resonance parameters (RP) + uncertainties
- 5 100 to 2000 ENDF files per isotope from ⁶Li to ²⁵²Cf
- 3 190 criticality-safety benchmarks (> 60 000 calculations) from the ICSBP
- Mo All Oktavian shielding benchmarks (neutrons and gammas)
- No Reactivity swing for a LWR using an "Inert Matrix Fuel" (Pu and Mo)
- $\delta \approx k_{eff}$ for a HTR (PBMR), ESKOM specifications
- No Inventory

Example with ²³⁸U: Monte Carlo calculations

Examples with ⁶³Cu(n,2n) and ⁶⁵Cu(n,el)

Examples of criticality benchmarks for ¹⁹**F**

Budapest 2012 Part 3

valu

Examples of criticality benchmarks for $^{180-186}$ **W and** 240 **Pu**

Examples of reactivity swing

Examples on shielding benchmarks

- Oktavian: Leakage current spectrum from the outer surface of a spherical pile of material, 14 MeV D-T neutron source at the center of the pile. (Al, Cu, Si, Ti, Cr, Mn, Co...)
- □ FNS: Slabs of material of varying thickness, at five different angles, 20 cm from a 14 MeV D-T neutron source. (Fe, W).
- □ LLNL Pulsed Spheres: Time-of-Flight measurements through spherical shells of varying thickness, 14 MeV D-T neutron source. (Al, Mg, Fe).

Application for Cr Oktavian benchmark

Budapest 2012 Part 3

NRG

Application for Mn Oktavian benchmark

Application for Si Oktavian benchmark

Application for W FNS benchmarks

Application for Fe FNS benchmarks

Application for Mg LLNL benchmarks

Results for the ESFR parameters

The sodium void reactivity (SVR) in units of dollars (\$) can be obtained with the following equation :

$$SVR = \frac{k_2 - k_1}{k_1 k_2} \frac{1}{\beta_{\text{eff}}} \times 10^5,$$
 (1)

where the number of delayed neutron β_{eff} (in units of pcm) and the k_{eff} values are obtained from the MCNP calculations.

 k_1 corresponds to the core flooded with Na coolant, and k_2 to the same core voided of Na coolant.

In both cases the Na coolant present in the axial and radial reflectors is supposed to remain unchanged.

Main components: ²³Na, ⁵⁶Fe, Zr, ²³⁸U, ^{239,240}Pu Most sensitive reactions: ²³⁹Pu(n,f) and ²³⁸U(n, γ)

D. Rochman – 28 / 66

TMC versus Perturbation method

- ① Obtain uncertainties on a large-scale models due to nuclear data uncertainties
- ② Systematic approach, reliable and reproducable

Solution (1): Total Monte Carlo

Solution (2): Perturbation method

 \implies MCNP+ Perturbation cards+covariance files

Budapest 2012 Part 3

D. Rochman - 30 / 66

TMC and Perturbation method

D. Rochman – 31 / 66

Necessary software

Convergence and consistency of v-bar and resonance parameters

Convergence TMC/Perturbation

TMC versus Perturbation: Results

Comparison TMC-Perturbation methods for a few k_{eff} benchmarks. The ratio in the last column is "TMC over Perturbation".

		Total Monte Carlo	Perturbation	Ratio
Benchmark	Isotopes	Uncertainty	Uncertainty	
		due to nuclear	due to nuclear	
		data (pcm)	data (pcm)	
hst39-6	¹⁹ F	330	290	1.16
hmf7-34	¹⁹ F	350	290	1.21
ict3-132	⁹⁰ Zr	190	150	1.29
hmf57-1	²⁰⁸ Pb	500	410	1.22
pmf2	²³⁹ Pu	840	720	1.16
pmf2	²⁴⁰ Pu	790	650	1.21

Results: Details of the TMC-Perturbation methods for 19 **F** k_{eff} **benchmarks**

<u>chmarks</u>			uious io	L L N eff	NRC
	hs	t39-6 ¹⁹ F	hm	f7-34 ¹⁹ F	
	$\Delta \mathbf{k}$	K _{eff} (pcm)	$\Delta \mathbf{k}$	K _{eff} (pcm)	—
	TMC	Perturbation	TMC	Perturbation	
Total	330	290	350	290	_
MF2	280	240	310	280	
MF3	170	160	75	105	
MF4	100	-	80	-	
MF6	30	-	35	-	

Results: Details of the TMC-Perturbation methods for ^{239,240}Pu k_{eff} benchmarks

	pn	nf2 ²³⁹ Pu	p n	nf2 ²⁴⁰ Pu
	$\Delta \mathbf{k}$	K _{eff} (pcm)	$\Delta \mathbf{k}$	K _{eff} (pcm)
	TMC	Perturbation	TMC	Perturbation
Total	840	720	790	650
MF1	400	-	370	-
(n,inl)	170	140	70	50
(n,el)	250	240	30	40
(n,γ)	100	100	30	30
(n,f)	720	660	730	640
MF4	20	_	20	_
MF5	50	_	30	_
MF6	50	_	30	_

TMC vs. perturbation: pro and cons

- Given First attempt to compare two uncertainty propagation method
- Control TMC: more general and exact answer, does not require special codes, more exhaustive
- 👶 but slower
- Perturbation: approximate, require special processing and codes, limited
 but faster
 - TMC uncertainties 15 to 30 % larger than from perturbation

Perturbation approach still dominates the *market*, but for how long ?

Application to a Pebble Bed Modular Reactor (PBMR)

- ✤ Model of a fuel pebble
- * Fuel particles, surrounded by coating layers, explicitly modeled
- * Regular rectangular lattice of fuel particles

Application to a Pebble Bed Modular Reactor (PBMR)

- ✤ Hexagonal close packed lattice
- Moderator region consists of homogeneous moderator pebbles as the fuel, reflectors and shields as defined by ESKOM

PBMR: Neutron Flux spectrum

Neutron flux spectrum at the radial core boundary (Almost no neutron abov@ochman - 41/66 Budapest 2012 Part 3

PBMR: ¹²C nuclear data

- ✤ For neutron energy lower than few MeV: only elastic and capture cross sections
- * JEFF-3.1: σ_{th} (n,el)= 4.746 ± 0.002b and σ_{th} (n, γ)= 3.53 ± 0.07mb
- * All (n,el), (n, γ), angular distribution and emission spectra randomly varied

PBMR: Results

- * Convergence achieved after $\simeq 350$ runs (10 days of 15 CPU)
- More runs would be suitable
- * Effect of other isotopes (13 C, Si, fission products and of course actinides)

TMC is the only method to propagate uncertainties due to thermal scattering data (no covariances exist)

In the case of H in H₂O, the incoherent inelastic scattering is the major component and the coherent and incoherent elastic scattering can be neglected. The inelastic scattering is described by the scattering law $S(\alpha,\beta)$ at different temperatures.

$$\frac{\partial^2 \sigma(E \to E', \mu)}{\partial E' \partial \mu} = \frac{\sigma_b}{2kT} \sqrt{\frac{E'}{E}} S(\alpha, \beta)$$
(2)

with *E* and *E'* the incident and outgoing neutron energies in the laboratory system, μ is the cosine of the scattering angle in the laboratory system, σ_b is the characteristic bound scattering cross section for the material (water in this case) and *kT* is the thermal energy in eV. S(α , β) is the asymmetric form of the scattering law, which depends on two variables: the momentum transfer α and the energy transfer β :

$$\alpha = \frac{E + E' - 2\sqrt{EE'\mu}}{AkT}$$
(3)
$$\beta = \frac{E' - E}{kT}$$
(3)
D. Rochman - 44 / 60

- 1. create input parameters for the LEAPR module of NJOY,
- 2. run LEAPR to generate thermal scattering data in ENDF format "MF 7, MT 4" (incoherent inelastic data in terms of $S(\alpha,\beta)$ tables for different temperatures),
- 3. use the ENDF file with the THERMR module of NJOY to generate pointwise thermal scattering cross sections,
- 4. use the ENDF file and the output of THERMR with the ACER module of NJOY to generate thermal scattering data for the MCNP code in the ACE format,
- 5. and finally repeat *n* times the previous steps with random input parameters for LEAPR.

The central (or nominal) values for all model parameters to be used in LEAPR are the values used for the JEFF-3.1.1 evaluation.

Figure 1: Top: incoherent random inelastic scattering cross section of H in H₂O compared to experimental data and the inelastic cross section from the JEFF-3.1.1 library. BuBotto 2012 Determination on the inelastic cross section calculated from 1330 random in-

Figure 2: Energy-energy correlation matrix for the incoherent inelastic scattering of H in H_2O . Note that the correlation values are always larger than 0.7.

Figure 3: Standard deviations for some benchmarks as a function of the number of D. Rochman – 48 / 66

Burn-up calculation: Overview

- ➡ Method: Total Monte Carlo (TMC)
- Description of the SERPENT model (Fuel pin-cell)
- Considered data in TMC

Results

The complete report (NRG-113696) can be found at

ftp://ftp.nrg.eu/pub/www/talys/bib_rochman/tmc.nrg.pdf

Description of the SERPENT model (Fuel pin-cell)

The fuel test is a typical fuel rod from TMI-1 PWR, 15x15 assembly design.

Hot Full Power conditions		Configuration	
Fuel temperature (K)	900	Unit cell pitch (mm)	14.427
Cladding temperature (K)	600	Fuel pellet diameter (mm)	9.391
Moderator (coolant) temperature (K)	562	Fuel pellet material	UO_2
Moderator (coolant) density (g/cm^3)	0.7484	Fuel density (g/cm ³)	10.283
Reactor power (MWt)	2772	Fuel enrichment (w/o)	4.85
Number of assembly in reactor core	177	Cladding outside diameter (mm)	10.928
Number of fuel rods/fuel assembly	208	Cladding thickness (mm)	0.673
Active core length (mm)	3571.20	Cladding material	Zircaloy-4
		Cladding density (g/cm ³)	6.55
		Gap material	He
		Moderator material	H_2O

The fuel sample is burned for a unique complete cycle and the lengths of the burn time and cooling time:

Operating cycle	1
Burn time (days)	1825
Final burnup (GWd/MTU)	61.28
Downtime (days)	1870
Specific power (kW/kgU)	33.58

Considered data in TMC

pellet dia	meter			2 %			
fuel enric	hment			3 %			
fuel der	nsity			4 %			
moderator	density			5 %			
Nuclear data	ENDF-6 name	²³⁵ U	²³⁸ U	²³⁷ Np	²³⁹ Pu	²⁴¹ Pu	Lumped fiss. prod.
complete ENDF file	MF1-6,10,12,14	Х	Х		Х		Х
fission yields	MF8	X	Х	Х	Х	Х	
v-bar	MF1	X	Х		Х		
Resonance range	MF2	X	Х		Х		
Fast range	MF3	X	Х		Х		
Angular distr.	MF4	X	Х		Х		
Fission neut. spec.	MF5	Х	Х		Х		
(n,γ)		X	Х		Х		
(n,f)		Х	Х		Х		
(n,el)		X	Х		Х		

Lumped (138) fission products: $^{72-74,76}$ Ge, 75 As, $^{76-80,82}$ Se, 79,81 Br, $^{80-84,86}$ Kr, 85,87 Rb, $^{86-88,92}$ Sr, 89 Y, 93,95 Zr, 94,95 Nb, $^{95-97}$ Mo, 99 Tc, $^{99-104,106}$ Ru, 103,105,106 Rh, $^{104-108,110}$ Pd, 109 Ag, $^{111-114,116}$ Cd, 113,115 In, $^{115,117-119,126}$ Sn, 121,123,125 Sb, $^{122-128,130}$ Te, 127,129,135 I, $^{128,130-132,134-136}$ Xe, $^{133-137}$ Cs, $^{134-138}$ Ba, 140 La, 140,142 Ce, 141,144 Pr, $^{142-146,148,150}$ Nd, $^{147-149}$ Pm, $^{147,149-152,154}$ Sm, $^{151-156}$ Eu, $^{152,154-158,160}$ Gd, 159,160 Tb, $^{160-164}$ Dy, 165 Ho, 166,167 Er.

Budapest 2012 Part 3

D. Rochman - 53 / 66

Results on k_∞

Results on k_{∞}

Results on	\mathbf{k}_{∞}						\
							-NRG
			В	urn-up (GWd/M	ITU)		
	0	10	20	30	40	50	60
k∞	1.41e+00	1.25e+00	1.16e+00	1.08e+00	1.02e+00	9.55e-01	9.01e-01
Order							
1.	²³⁵ U	²³⁸ U	²³⁸ U	²³⁸ U	²³⁸ U	²³⁹ Pu	²³⁹ Pu
2.	²³⁸ U	²³⁵ U	²³⁵ U	²³⁵ U	²³⁵ U	Fiss. Yields	Fiss. Yields
3.		Fiss. Prod.	Fiss. Prod.	²³⁹ Pu	²³⁹ Pu	²³⁸ U	²³⁸ U
4.		²³⁹ Pu	²³⁹ Pu	Fiss. Prod.	Fiss. Yields	Fiss. Prod.	Fiss. Prod.
5.		Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Prod.	²³⁵ U	²³⁵ U
			Uncertainties (in	n %) coming fro	om		
²³⁵ U	0.50	0.43	0.39	0.35	0.32	0.28	0.24
²³⁸ U	0.46	0.47	0.44	0.40	0.35	0.33	0.36
²³⁹ Pu	0.05	0.15	0.26	0.33	0.39	0.44	0.47
Fiss. Yiel.	0.00	0.21	0.25	0.29	0.32	0.35	0.36
Lumped F.P.	0.00	0.37	0.36	0.31	0.31	0.29	0.28
Total	0.68	0.79	0.78	0.76	0.76	0.76	0.79

Results on reaction rates

			Burn	u-up (GWd/M7	ΓU)		
	0	10	20	30	40	50	60
rr 235 U(n, γ)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	235 U(n, γ)	235 U(n, γ)
rr 238 U(n, γ)	²³⁸ U(n,el)	238 U(n, γ)	238 U(n, γ)	²³⁸ U(n, γ)	²³⁸ U(n, γ)	238 U(n, γ)	238 U(n, γ)
rr ²³⁹ Pu(n, γ)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	238 U(n, γ)	235 U(n, γ)	238 U(n, γ)
rr ²⁴⁰ Pu(n, γ)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁸ U(n, γ)	238 U(n, γ)	238 U(n, γ)	238 U(n, γ)
rr ²⁴¹ Pu(n, γ)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁸ U(n,γ)	238 U(n, γ)	238 U(n, γ)
rr ²³⁵ U(n,f)	²³⁵ U MF5	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U MF5	²³⁸ U(n,γ)	²³⁸ U(n,γ)	²³⁸ U(n,γ)
rr ²³⁸ U(n,f)	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁹ Pu MF5
rr ²³⁹ Pu(n,f)	²³⁹ Pu(n,el)	²³⁹ Pu(n,el)	²³⁹ Pu(n,el)	²³⁹ Pu(n,f)	²³⁹ Pu(n,f)	²³⁹ Pu(n,f)	²³⁹ Pu(n,f)
rr ²⁴⁰ Pu(n,f)	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁹ Pu MF5
rr ²⁴¹ Pu(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁸ U(n,γ)	²³⁸ U(n,γ)	²³⁸ U(n,γ)
	Total	uncertainties (d	ue to transport	data and fissio	on yields, in %) for	
rr 235 U(n, γ)	2.05	2.04	2.07	2.14	2.31	2.54	2.79
rr ²³⁸ U(n,γ)	1.75	1.74	1.69	1.65	1.55	1.37	1.25
rr ²³⁹ Pu(n,γ)	1.22	1.12	1.09	1.13	1.36	1.68	2.05
rr ²⁴⁰ Pu(n, γ)	0.64	0.98	0.64	0.72	0.96	1.27	1.61
rr ²⁴¹ Pu(n, γ)	1.35	1.20	1.16	1.17	1.38	1.69	2.09
rr ²³⁵ U(n,f)	0.52	0.56	0.69	0.87	1.21	1.61	2.07
rr ²³⁸ U(n,f)	6.61	5.91	5.29	4.84	4.31	3.91	3.70
rr ²³⁹ Pu(n,f)	1.99	1.84	1.77	1.77	1.92	2.17	2.53
rr ²⁴⁰ Pu(n,f)	2.68	2.45	2.27	2.18	2.14	2.22	2.49
rr 241 Pu(n,f)	1.34	1.21	1.15	1.17	1.36	1.67	2.06

Results on macroscopic cross sections

esults	on macro	oscopic cr	oss sectio	ons			— N	RC
			Βι	urn-up (GWd/N	ITU)			
	0	10	20	30	40	50	60	
Σ_{abs1}	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁹ Pu MF1	²³⁹ Pu MF1	238 U(n, γ)	238 U(n, γ)	
Σ_{abs2}	²³⁵ U(n,el)	²³⁵ U(n,f)	²³⁵ U(n,f)	235 U(n, γ)	²³⁸ U(n,γ)	238 U(n, γ)	238 U(n, γ)	
$\Sigma_{\rm fiss1}$	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁹ Pu MF5	²³⁹ Pu MF5	
$\Sigma_{\rm fiss2}$	²³⁵ U(n,el)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁸ U(n, γ)	²³⁸ U(n,γ)	238 U(n, γ)	
$\nu \Sigma_{\rm fiss1}$	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	238 U v-bar	²³⁸ U MF1	²³⁸ U MF1	
$\nu \Sigma_{\rm fiss2}$	²³⁵ U(n,el)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁸ U MF1	²³⁸ U(n,γ)	²³⁸ U(n,γ)	²³⁸ U(n,γ)	
D _{iff1}	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁹ Pu MF5	²³⁹ Pu MF5	
D _{iff2}	²³⁸ U MF4	F. P.	F. P.	F. P.	F. P.	²³⁵ U MF5	²³⁹ Pu MF5	
	To	otal uncertainti	es (due to tran	sport data and	fission yields, in	n %) for		-
Σ_{abs1}	1.08	1.11	1.09	1.04	1.07	1.06	1.08	-
Σ_{abs2}	1.12	1.06	1.13	1.28	1.50	1.74	2.00	
$\Sigma_{\rm fiss1}$	1.71	1.75	1.74	1.73	1.76	1.83	2.00	
$\Sigma_{\rm fiss2}$	1.63	1.44	1.40	1.52	1.73	2.03	2.36	
$\nu \Sigma_{\rm fiss1}$	1.98	2.01	2.02	2.07	2.15	2.28	2.46	
$\nu \Sigma_{\rm fiss2}$	1.63	1.40	1.39	1.51	1.74	2.03	2.37	
D _{iff1}	1.88	1.49	1.32	1.19	1.10	1.06	1.01	
D _{iff2}	1.22	1.63	1.62	1.62	1.56	1.56	1.56	

Results on number densities for actinides

			Burn-ı	ıp (GWd/MTU	J)		Cooling ti	me (years)
	0	20	30	40	50	60	0	300
⁴ U	-	²³⁵ U(n,f)	235 U(n, γ)					
⁵ U	-	²³⁵ U(n,f)	²³⁵ U(n,f)	238 U(n, γ)	238 U(n, γ)	238 U(n, γ)	²³⁸ U(n,γ)	238 U(n, γ)
⁶ U	-	235 U(n, γ)	$^{235}U(n,\gamma)$	$^{235}U(n,\gamma)$	235 U(n, γ)			
⁸ U	-	$^{238}U(n,\gamma)$	238 U(n, γ)					
⁷ Np	-	²³⁵ U MF5	$^{235}U(n,\gamma)$	235 U(n, γ)				
⁸ Pu	-	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	235 U(n, γ)	235 U(n, γ)	235 U(n, γ)
⁹ Pu	-	²³⁸ U(n,γ)	238 U(n, γ)	²³⁸ U(n,γ)	²³⁸ U(n,γ)	238 U(n, γ)	238 U(n, γ)	238 U(n, γ)
⁰ Pu	-	²³⁵ U(n,f)	239 Pu(n,f)	239 Pu(n,f)	239 Pu(n,f)	239 Pu(n,f)	²³⁹ Pu(n,f)	²³⁹ Pu(n,f)
¹ Pu	-	235 U(n,f)	²³⁵ U(n,f)	239 Pu(n,f)	239 Pu(n,f)	²³⁸ U(n,γ)	238 U(n, γ)	²³⁹ Pu(n,f)
¹ Am	-	²³⁵ U(n,f)	²³⁸ U(n,γ)					
		Total u	incertainties (d	lue to transpor	t data and fissi	on yields, in %	b) for	
⁴ U	-	0.12	0.41	0.55	0.69	0.93	0.97	1.90
⁵ U	-	0.17	0.72	1.21	1.88	2.79	2.93	2.92
⁶ U	-	1.98	1.96	1.95	1.93	1.91	1.90	1.88
⁸ U	-	0.01	0.02	0.03	0.04	0.04	0.04	0.04
⁷ Np	-	9.50	4.13	3.39	2.98	2.74	2.72	1.83
⁸ Pu	-	12.1	4.98	3.83	3.16	2.74	2.71	2.53
⁹ Pu	-	1.78	2.30	2.60	2.91	3.22	3.26	3.22
⁰ Pu	-	1.93	1.95	2.05	2.22	2.41	2.43	2.34
¹ Pu	-	2.04	1.52	1.62	1.88	2.19	2.23	2.47
1 1 m		2 1 1	1.63	1 90	2 44	3 14	3 24	2.26

Results on number densities for fission products

							~ ~ ~	
			Burn-ı	up (GWd/MTU	J)		Cooling ti	me (years)
	0	10	30	40	50	60	0	300
Tc	-	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.
³³ Cs	-	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.
⁴⁰ Ce	-	²³⁵ U F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.
¹³ Nd	-	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.
⁴⁷ Sm	-	²³⁵ U F.Y.	²³⁵ U F.Y.	F.P.	F.P.	F.P.	F.P.	F.P.
⁴⁹ Sm	-	²³⁵ U F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.
⁵¹ Sm	-	²³⁵ U F.Y.	F.P.	F.P.	F.P.	F.P.	F.P.	F.P.
⁵⁴ Sm	-	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.
⁵³ Eu	-	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	F.P.	F.P.	F.P.
⁵⁵ Gd	-	F.P.	F.P.	F.P.	F.P.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.
		Total ı	uncertainties (due to transpor	rt data and fiss	ion yields, in ^o	%) for	
Tc	-	10.4	9.41	9.19	9.10	9.11	9.12	9.12
³ Cs	-	3.50	3.74	4.16	4.72	5.39	5.47	5.45
⁴⁰ Ce	-	2.55	2.78	2.95	3.14	3.34	3.37	3.38
⁴³ Nd	-	4.35	4.93	5.42	5.98	6.59	6.67	6.65
⁴⁷ Sm	-	11.4	20.6	25.0	28.7	31.7	32.0	23.8
⁴⁹ Sm	-	11.4	10.8	10.7	11.0	11.3	11.4	10.9
⁵¹ Sm	-	26.6	22.5	21.5	20.9	20.5	20.5	20.1
⁵⁴ Sm	-	26.2	20.6	19.4	18.6	18.1	18.1	18.1
³ Eu	-	13.8	12.1	12.5	12.9	13.3	13.4	13.3
⁵ Gd	-	27.0	22.4	22.4	22.5	22.8	23.0	11.0

Example for k_{∞}

Example for reaction rates

Example for macroscopic cross sections

D. Rochman – 63 / 66

Example for number densities

D. Rochman – 64 / 66

Example for number densities

Discussion/conclusion

Discussion/conclusion

Discussion/conclusion

