

Nuclear data of the future: daring selection via

adjustment and Total Monte Carlo

D. Rochman

Nuclear Research and Consultancy Group,

NRG, Petten, The Netherlands

Workshop on Nuclear Data and Uncertainty Quantification, CCFE, UK, January 2012

Contents

- How can we adjust nuclear data using TMC (feedback from experimental data)
- ⁽²⁾ Explanations
- ③ Examples
- ④ Conclusions

Pavlov's dog eating Schrodinger's cat (deterministic vs. Monte carlo approach)

Monte Carlo Nuclear Data Adjustment: TMC⁻¹

- Started in 2010
- Two publications so far (plus 2 submitted)
- Controversial (if understood at all)
- We believe this is the future of nuclear data evaluation work
- It might be the only way to sensibly improve C/E

Inverse TMC on ²³⁹Pu Total Monte Carlo + selection $\Rightarrow \frac{1}{TMC}$

- Use TALYS to create a single ²³⁹Pu evaluation close or equal to ENDF/B-VII.0 or JEFF-3.1.1
- ② Randomize all model parameters (resonances, nubar, fission neutron spectrum, TALYS parameters) to create 500 random ²³⁹Pu evaluations
- ③ Benchmarks the $n \ge 500$ files with the same set of criticality benchmarks
- ④ Select the best random file

Example: 100 benchmarks, 500 random files \implies 500 TALYS + NJOY and $100 \times 500 = 5 \cdot 10^4$ MCNP loops, 1.4 years on a single processor, or 5 days on 100 processors (3 GHz)

Total Monte Carlo: examples

etc

For each random ENDF file, the benchmark calculation is performed with MCNP. At the end of the *n* calculations, *n* different k_{eff} values are obtained. In the obtained probability distribution of k_{eff} , the standard deviation σ_{total} reflects two different effects:

$$\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2.$$
(1)

Each random file is completely different from another one: nu-bar ("*MF1*"), resonance parameters ("*MF2*"), cross sections ("*MF3*"), also *MF4*, *MF5*, *MF6*,

Nuclear data: random ²³⁹Pu in the thermal and fast range ²³⁹Pu $\overline{^{239}}\overline{P}u(n,2n)$ (n Cross section (mbarns) Exp Cross section (barns) 600 ENDF/B-VII.0 3 Central Central ENDF/B-VII.0 Exp. 400 22000 1 1.0 10 10.0 155 200.1Incident neutron energy (MeV) Incident neutron energy (MeV) 2.5 $\overline{^{239}}Pu(n,inl)$ (1) Central cross sections *almost* equal Cross section (barns) 2.0to ENDF/B-VII.0 or JEFF-3.1 1.5Central (2) Random cross sections obtained from ENDF/B-VII.0 1.0random model parameters Exp. 0.5(3) Similar results in MF1, 2, 4, 5 and 6 0.0 10 155 20()

Incident neutron energy (MeV)

Inverse TMC: simple example with 6 keff benchmarks

Inverse TMC: simple example with 6 keff benchmarks

Inverse TMC: 6 k_{eff} benchmarks with random ²³⁹Pu

Table 1: List of plutonium benchmarks selected for the random search.

Name	Cases	Name	Cases	Name	Cases	Name	Cases
pmf1	1	pmf2	1	pmf5	1	pmf6	1
pmf8	1	pmf12	1	pmf13	1	pci1	1
pmi2	1	pst1	6	pst2	6	pst3	8
pst4	13	pst5	9	pst6	3	pst7	9
pst8	29	pst12	22	pmm1	6		

$$\alpha = \sum_{i=0}^n \frac{(C_i - E_i)^2}{C_i},$$

Results independent of the type of factor α , χ^2 ... or

$$F = 1 - 10^{\sqrt{\frac{1}{N}\sum(\log(E_i) - \log(C_i))^2}}$$

11 / 18

(2)

(3)

NRG

Random file number

Inverse TMC: *best* ²³⁹**Pu for the ANDES project**

Inverse TMC: second example on natural copper and Oktavian benchmark

Inverse TMC: third (and last) example on thermal scattering data H in H₂O

Table 2: List of thermal benchmarksselected for the random search.

Name	Cases	Name	Cases
pst12	22	pst1	6
lct7	10	lct6	18
lst4	7	lmt1	1
ict3	2	hst32	1
hst42	8		

$$F = 10^{\sqrt{\frac{1}{N}\sum(\log(E_i) - \log(C_i))^2}} \quad (4)$$

Example on thermal scattering data H in H_2O

Future work

- Continue with TMC (more reactor calculations, applied to current reactors),
- \Rightarrow Improve the quality of the TENDL library (baseline for TMC, TMC⁻¹),
- ➡ Apply TMC⁻¹ to a large number of isotope (including crit-safety, reactor, dosimetry benchmarks)
- Go where covariance methods can not be applied (TMC applied to thermo-hydraulic and transient calculations)
- Create the world best nuclear data library (NRG, CCFE, others are welcome)

©And finally world domination (and world peace).