PAUL SCHERRER INSTITUT

D. Rochman (PSI) and S. Okumura (IAEA/NDS)

Bayesian Monte Carlo for FY evaluation with GEF: example and plan

CRP on FY, videoconference, August 31-September 4, 2020

- Background/recall
- Bayesian Monte Carlo with GEF
- Example for ²³⁵U
- Plans for the CRP

• Acknowledgment: to K.H. Schmidt for the availability of the full GEF version

- No covariances in libraries, only uncertainties
- Users need covariances
- A few evaluation methods exists, leading to various results (see next slide with 2 examples)
- In the following, a Bayesian Monte Carlo method is proposed
- Original idea was presented in JEF/DOC-1681, and at the PND2 2014 conference at Bruyères-le-Châtel (A.J. Koning)
- Applied in NDS 139 (2017) 1, EPJ Web Conf. 146 (2017) 09023, PNE 101(2017) 486, ANE 95 (2016) 125

Table 3. Comparisons with the uncertainties presented in reference [26] for a PWR case, 4.1 wt.% enrichment, UO fuel, exposure of 40 MWd/tHM without cooling (case 1), and with reference [11] for a PWR case, 3.4% enrichment, UO fuel, exposure of 54 MWd/kgU, with 10 years cooling (case 2).

Isotope	Uncertainty (%)			
	Case 1		Case 2	
	[26]	This work	[11]	This work
234 U	_	1.8	2.4	2.1
$^{235}\mathrm{U}$	1.0	1.4	3.3	2.7
$^{236}\mathrm{U}$	1.5	1.6	1.5	1.6
239 Pu	2.0	2.3	2.9	2.6
240 Pu	1.9	2.3	2.5	2.2
241 Pu	2.7	1.7	2.7	2.1
$^{242}\mathrm{Cm}$	2.2	2.7	_	3.6
244 Cm	8.5	9.7	9.6	9.1
$^{90}\mathrm{Sr}$	5.0	0.7	1.5	0.7
$^{99}\mathrm{Tc}$	9.5	1.3	10	1.5
129 I	13	2.5	_	2.9
$^{137}\mathrm{Cs}$	1.7	7	4.0	6.2
¹⁴⁸ Nd	14	0.4	0.4	0.4

EPJ Nuclear Sci. Technol. 4, 6 (2018)

FIG. 25. (Color online) Uncertainty on k_{∞} for the PWR MOX assembly due to the fission yields of 239,241 Pu and 235,238 U for different types of correlations and normalizations (see text). The number of groups for the CASMO-5 transport is 19.

Nucl. Data Sheets 139 (2017) 1

Bayesian Monte Carlo with GEF

- GEF can produce good quality fission yields (with covariances), bases on physical models and a limited set of parameters (as TALYS for cross sections)
- It is well suited for a Bayesian Monte Carlo (BMC) method defined as

BMC = TMC + feedback on parameter distributions

- The method is applied as follows:
 - 1. Select parameter distributions
 - 2. Produce random FY by sampling parameters
 - 3. Compare C and E
 - 4. Use weights (from C and E) to update parameters
 - 5. Repeat 2. to 4. until convergence

- BMC is applied here to the independent FY of ²³⁵U at thermal energy
- Latest GEF (2020 V. 1.1 from K.H. Schmidt) is used
- Random FY are compared to 75 evaluated FY from ENDF/B-8.0
- 22 GEF parameters are used (Table 7 in the JEFF-Report 24)
- Normal and independent distributions, χ^2 defined as

$$\chi^{2} = \frac{1}{n_{FY}} \sum_{j=1}^{n_{FY}} \left(\frac{C_{j}^{(i)} - E_{j}}{\sqrt{\left(\Delta E_{j}^{2} + \Delta C_{j}^{2}\right)}} \right)^{2}, i \text{ random calculation}$$

• Weights defined as

$$w_i = e^{-\chi^2/2}$$

- 11 iterations performed, 1500 random files / iteration
- 22 parameters updated

Plans for the CRP

- Apply the BMC approach to minor actinides
- Which actinides: to be decided during the CRP
- Which fission yields (measured, evaluated, independent, cumulative, all): to be decided during the CRP
- First possibility: targeting major actinides,
- Second possibility: targeting minor actinides (possibly a chain of actinides all together, e.g. all Cm) ?
- Which incident energy ?

Wir schaffen Wissen – heute für morgen

