PAUL SCHERRER INSTITUT

D. Rochman, A. Laureau

EUROfusion PPPT task: status and achievements

JEFF meeting, Fusion working group, 28-30 November 2018, NEA, Paris, France

- PPPT Task specifications 2018
- Status and achievement

• PMI-3.3-T019: EPFL/PSI contribution to PPPT nuclear data development: Updating of evaluation methods and improvement of activation cross sections.

Deliverable	Title	Deliverable owner	Due date
PMI-3.3-T00N-D001	Report or publication on the Fe56 evaluation methods and performances	D. Rochman	31.12.2018
PMI-3.3-T00N-D002	Report of publication on activation cross section improvement	D. Rochman	31.12.2018

- Preliminary remarks:
 - Fe and Fe56 are still not well evaluated in the JEFF-3.3 and ENDF/B-VIII.0 libraries
 - Problems are still present for the shielding benchmarks
 - Modelling is not adequate in specific energy regions
 - Possible questions on the (n,inl) measurements
 - No theoretical solutions are foreseen in a short period
- Many international efforts are going on
 - In the resonance range (IRSN evaluation)
 - In the fast range (IAEA/INDEN network, JENDL...)
 - Support from the benchmark side (SINBAD)
- The present work aims at studying how far the current theoretical knowledge can be used to globally improve C/E, both for differential and integral data

- Plan of study:
 - Generate random nuclear data files for Fe isotopes with TALYS
 - Random parameters
 - Random models
 - Generate random nuclear data files for Fe isotopes with EMPIRE
 - Random parameters
 - Random models
 - Benchmark the random files with criticality/shielding benchmarks and study the impact on possible future measurement programme (PETALE at CROCUS)
 - Provide a feedback for future improvements
- Some results will be presented in the Nuclear Data Sheets 2019 paper "TENDL: Complete Nuclear Data Library for innovative Nuclear Science and Technology"

• Criticality benchmarks of interest

TABLE 7.1. LIST OF IRON AND STAINLESS STEEL REFLECTED BENCHMARKS

No.	ICSBEP Label	Short name	Common name
1	HEU-MET-FAST-013	hmf013	VNIITF-CTF-SS-13
2	HEU-MET-FAST-021	hmf021	VNIITF-CTF-SS-21
3	HEU-MET-FAST-024	hmf024	VNIITF-CTF-SS-24
4	HEU-MET-FAST-087	hmf087	VNIITF-CTF-Fe
5	HEU-MET-FAST-088	hmf088-001	hmf088-001
6	HEU-MET-FAST-088	hmf088-002	hmf088-002
7	HEU-MET-INTER-001	hmi001	ZPR-9/34
8	HEU-MET-THERM-013	hmt013-002	Planet_Fe-2
9	HEU-MET-THERM-015	hmt015	_
10	IEU-MET-FAST-005	imf005	VNIIEF-CTF-5
11	IEU-MET-FAST-006	imf006	VNIIEF-CTF-6
12	LEU-COMP-THERM-042	lct042-001	lct042-001
13	LEU-COMP-THERM-042	lct042-002	lct042-002
14	LEU-COMP-THERM-043	lct043-002	IPEN/MB-01
15	LEU-MET-THERM-015	lmt015-001	RB-Vinca(01)
16	MIX-COMP-FAST-001	mcf001	ZPR-6/7
17	MIX-COMP-FAST-005	mcf005-s	ZPR-9/31
18	MIX-COMP-FAST-006	mcf006-s	ZPPR-2
19	PU-MET-FAST-015	pmf015	BR-1-3
20	PU-MET-FAST-025	pmf025	pmf025
21	PU-MET-FAST-026	pmf026	pmf026
22	PU-MET-FAST-028	pmf028	pmf028
23	PU-MET-FAST-032	pmf032	pmf032
24	PU-MET-INTER-002	pmi002	ZPR-6/10
25	PU-MET-INTER-003	pmi003-001s	ZPR-3/58(U)
26	PU-MET-INTER-004	pmi004-001s	ZPR-4/59(Pb)
27	IEU-COMP-INTER-005	ici005	ZPR-6/6A

- Shielding benchmarks of interest
 - 1. FNS 20, 40 and 60 cm
 - 2. LLNL pulse spheres 0.9, 2.9, 4.8 mfp
 - 3. TUD Fe
 - 4. SG39 Fe SINBAD
 - Oktavian Fe
 - TUD Fe
 - FNG SS
 - IPPE Fe
 - Janus 1, Janus 8
 - Aspis Fe
 - Aspis88

- One single model might not be enough to "fit" all experimental data,
- Usually only one set of model is used for a full evaluation, e.g. in TENDL:
 - -OMP
 - Gamma-strength function:
 - Level density model:

- Local Koning-Delaroche
- Kopecky-Uhl generalized Lorentzian
- Constant temperature + Fermi gas model
- Other options are available in TALYS:
 - 8 gamma-strength functions (called *i*)
 - 6 level density models (called j)
 - Different OMP (local, general, microscopic) (called k)
 - In total: i x j x k possibilities (11n, 12n, 58n...)
 - For each of these possibilities, one can sample model parameters
- Other extreme solution: EMPIRE.
- In the following: -10 TALYS models (semi-empirical and microscopic)
 -8 EMPIRE models (semi-empirical and microscopic)
- In total: almost 18 000 random files

http://www.psi.ch/stars —

Many prior correlation matrices can be obtained depending on the models/combination, all for the same reaction. Examples for ⁵⁶Fe(n,inl):

• Example for ⁵⁶Fe angular distribution

- Angular distributions are not normally distributed.
- Variations of models and parameters might not be enough to cover experimental data.

- ⁵⁶Fe: TALYS+EMPIRE+EXFOR+BFMC
- Generalization for many reactions (random models + random parameters)

- Results on some criticality benchmarks
- Impact of varying Fe56 with different models/parameters
- Very skewed distributions can be obtained

	+/- (pcm)	skew		+/- (pcm)	skew
hmf72.1	702	0.30	hmf21.1	593	0.22
pmf15.1	1325	0.88	hmi1.1	1160	-0.06
hmf13.1	770	1.02	hmt13.2	410	-0.02
lct42.1	130	-0.14	mcf1.1	394	-0.30

• Example for hmf13 and hmt13-002

FIG. 36. Examples of the calculated $k_{\rm eff}$ spread for two benchmarks highly sensitive to iron. All nuclear data of 56 Fe are varied, using about 2400 random files, with different models and model parameters.

FIG. 37. Same as Fig. 36, but keeping MF4 fixed (no variation of the angular distributions).

- Details of the hmi1 benchmark using TMC, TMC+JEFF for other Fe isotopes, and sensitivities
- Indicates the needs of studying all Fe isotopes together

PAUL SCHERRER INSTITUT

PMI-3.3-TOON-DO01

• HMI-001 - Impact of the BMC on the k_{eff} uncertainty propagation

Random file number

HMI-001:

- System very sensitive to iron cross sections: metallic fuel + metallic reflector
- Nuclear data iron uncertainty larger than the experimental uncertainty
- ⁵⁴⁻⁵⁷⁻⁵⁸Fe: TENDL
 - ⁵⁶Fe: sampling on ND parameters & models
 - other isotopes: JEFF3.3

BMC assimilation:

effects

http://www.psi.ch/stars

- Strong reduction of the posterior uncertainty
- Perspective: perform the BMC assimilation using all iron isotopes to avoid compensation

- Example for ASPIS (model received from I. Kodeli with very detailed reports and efficient MCNP model).
- ASPIS: Many activation measurements as a function of depth (In, Rh, S, Al,...)
- In the case of Rh: impact of Fe56

- Improvement of activation cross sections
- Based on the previous work with NRG, some reactions still can be improved

						C/E	
	Reaction	RI (b)	ΔRI	EAF-2010	JEFF-3.3	ENDF/B-VIII	TENDL-2017
1	¹⁴⁰ Ce(n,g)	0.54	0.05	0.49	0.55	0.55	0.55
2	¹⁶⁴ Eu(n,g)	105	10	1.35	1.58	1.60	1.42

						C/E	
	Reaction	RI (b)	ΔRI	EAF-2010	JEFF-3.3	ENDF/B-VIII	TENDL-2017
3	⁷⁶ Ge(n,g)	1.86	0.24	0.71	0.74	0.72	0.74
4	⁸⁵ Kr(n,g)	1.8	1.0		2.7	1.6	2.3

- http://www.psi.ch/stars

5.0 3

Net

						C/E	
	Reaction	RI (b)	ΔRI	EAF-2010	JEFF-3.3	ENDF/B-VIII	TENDL-2017
5	¹⁵⁴ Eu(n,g)	1320	130		1.6	1.6	2.3
6	⁹⁵ Nb(n,g)				0.29	0.21	0.04

Net

						C/E	
	Reaction	RI (b)	ΔRI	EAF-2010	JEFF-3.3	ENDF/B-VIII	TENDL-2017
7	¹¹⁹ Sn(n,g)	4.56	0.49		1.92	1.94	1.55
8	⁸⁸ Sr(n,g)	0.024			0.63	0.51	0.62
9	¹³⁰ Te(n,g)	0.42	0.02		0.64	0.65	0.65

					C/E	
	Reaction	reaction	EAF-2010	JEFF-3.3	ENDF/B-VIII	TENDL-2017
10	¹⁶⁵ Ho(n,t)	d-Be	0.48			0.50
11	¹⁵⁰ Nd(n,2n)	fng_5min	1.83			1.65
12	¹⁴¹ Pr(n,2n)	fng_5min	1.37			1.35
13	¹⁵⁹ Tb(n,t)	d-Be	0.63			0.76

• Comparison with IRDFF-1.05 and possible improvements

	Reaction	Remarks on TENDL-2017 compared to IRDFF-1.05
14	²³ Na(n,2n)	XS probably too high between 19 and 30 MeV
15	²⁴ Mg(n,p)	Energy grid not dense enough
16	²⁷ Al(n,p)	Energy grid not dense enough
17	²⁸ Si(n,p)	Autonorm needed on a dense energy grid
18	³¹ P(n,p)	Energy grid not dense enough
19	⁴⁵ Sc(n,g)	XS too low between 100 and 200 keV Wrong shape above 14 MeV
20	⁵² Cr(n,2n)	XS too low above 18 MeV
21	⁵⁴ Fe(n,2n)	XS too high above 18 MeV
22	⁵⁴ Fe(n,a)	Resonances missing
23	⁵⁶ Fe(n,p)	XS too high above 20 MeV

• Comparison with IRDFF-1.05 and possible improvements

	Reaction	Remarks on TENDL-2017 compared to IRDFF-1.05
24	⁵⁸ Ni(n,2n)	XS too low above 18 MeV
25	⁶⁷ Zn(n,p)	Thermal 10 ¹⁸ too low
26	⁹⁰ Zr(n,2n)	XS too low above 18 MeV

• A new database using the Atlas of Neutron Resonances 6th edition is being created

- <u>PMI-3.3-T00N-D001:</u>
 - Fe56 evaluation is not over
 - Model knowledge is not enough
 - Necessity to consider all isotopes together
 - For future work: make use of model defects
- <u>PMI-3.3-T00N-D002:</u>
 - Some specific reactions to be improved are identified
 - These 26 reactions need to be look at in details to ensure that integral (activation) results are not affected
 - Verification with the Atlas 6th edition is also necessary
 - For future work: go through these reactions and answer possible user feedback

Wir schaffen Wissen – heute für morgen

