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Abstract. Nuclear data, especially fission yields, create uncertainties in the predicted concentrations of fission
products in spent fuel which can exceed engineering target accuracies. Herein, we present a new framework that
extends data assimilation methods to burnup simulations by using post-irradiation examination experiments.
The adjusted fission yields lowered the bias and reduced the uncertainty of the simulations. Our approach
adjusts the model parameters of the code GEF. We compare the BFMC and MOCABA approaches to data
assimilation, focusing especially on the effects of the non-normality of GEF’s fission yields. In the application
that we present, the best data assimilation framework decreased the average bias of the simulations from
26% to 14%. The average relative standard deviation decreased from 21% to 14%. The GEF fission yields
after data assimilation agreed better with those in JEFF3.3. For Pu-239 thermal fission, the average relative
difference from JEFF3.3 was 16% before data assimilation and after it was 12%. For the standard deviations
of the fission yields, GEF’s were 100% larger than JEFF3.3’s before data assimilation and after were only
4% larger. The inconsistency of the integral data had an important effect on MOCABA, as shown with the
Marginal Likelihood Optimization method. When the method was not applied, MOCABA’s adjusted fission
yields worsened the bias of the simulations by 30%. BFMC showed that it inherently accounted for this
inconsistency. Applying Marginal Likelihood Optimization with BFMC gave a 2% lower bias compared to not
applying it, but the results were more poorly converged.

1 Introduction

Among nuclear data, fission yields (FYs) are very impor-
tant for burn-up [1–5], decay heat [6,7], and nuclear waste
management simulations [8]. These simulations need to
accurately predict the concentration of fission products
(FPs) in spent fuel, which requires reliable FY data
with high quality covariances. Historically, nuclear data
libraries only gave means and variances for FYs, not
accounting for covariances or the higher moments of the
distributions. A large amount of research was devoted to
proposing and testing methods to generate missing FY
covariance data [9–11]. One such method uses the code
GEF [12–15].
GEF produces uncertainty distributions for fission

observables by Monte-Carlo sampling its model param-
eters. For the nuclear fuel examined in this study,
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the uncertainties in calculated FP concentrations using
GEF’s FYs were as large as 56% and averaged at 21%.
Reference [16] set target accuracies on predicted FP con-
centrations in the spent fuel at 10%. This target accuracy
is exceeded at average and at extremity when applied to
the FP concentrations calculated with GEF FYs in this
study.
These large biases and uncertainties make burnup cal-

culations a strong target for data assimilation (DA) [17].
Reference [18] used GEF to assimilate the ENDF/B-
VII.1 FY data as the experimental evidence in DA.
Herein, we propose a similar framework that uses the
experimental counterpart of calculated FP concentrations:
post-irradiation examinations (PIE). PIE data have been
used for nuclear data adjustments [19,20], but never for
FYs and only with sensitivity-based [21] approaches. It is
important to consider FYs in DA with PIE data because
the FPs are highly sensitive to FYs and FYs can have
large uncertainties.
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Fig. 1. Histogram of the prior calculated Gd-160 concentration
in a LWR-Proteus Phase II fuel sample.

The DA framework was implemented around GEF and
tested on CASMO-5M [22] simulations of the LWR-Phase
II (LWR-PII) experimental campaign of Proteus [23,24].
The experiment, and simulations of it, was used to do
DA for GEF’s model parameters. These adjusted model
parameters were re-used in GEF to create adjusted FYs
and covariance data. Finally, the adjusted FYs were used
again in the CASMO-5M simulations to evaluate their
effect on the predicted FP concentrations. Importantly,
these adjusted FYs and FPs should be considered as
a calibration of the entire simulation chain, not of the
fundamental values of the FYs.
We applied two DA methods: MOCABA (Monte Carlo

Bayesian Analysis) [25] and BFMC (Backward Forward
Monte Carlo) [26]. Approaches based on first-order per-
turbation theory [27,28] were not used because they would
have required extensive code development to calculate
sensitivity coefficients to FYs. Additionally, burnup sim-
ulations have non-linear behavior and could invalidate
the linearity assumption for large FY uncertainties. The
FYs produced by GEF can be non-Gaussian and they
propagate through burnup calculations and create non-
Gaussian distributions in FP concentrations, as seen in
Figure 1. However with non-Gaussian integral parameters,
MOCABA may give biased posteriors due to its Gaus-
sian assumption. In this study, we apply both methods
to assess the effect of this non-Gaussianity. MOCABA
and BFMC are similar to methods applied previously for
differential nuclear data, which were called UMC-G and
UMC-B respectively, in references [29,30], with MOCABA
also having parallels to FBET [31,32].
The PIE data had a large degree of inconsistency

between the experiment and simulation; the bias was
not well explained by the experimental uncertainties and
the FY uncertainties. The inconsistency is important to
consider in the DA. Applying MOCABA to inconsis-
tent integral data sets can create unphysical adjustments.
Additionally, BFMC may produce a small to possibly neg-
ligible adjustment when there is a large inconsistency
and then DA would not be as effective [33]. We used
the Marginal Likelihood Optimization technique (MLO)
[34,35] to compensate for the inconsistency. This point
makes this work interesting to study the effect of MLO: it
helps to constrain the MOCABA adjustments and allows
for BFMC to adjust to a larger extent as well.

In the following text, we present the adjustments of the
GEF model parameters made with MOCABA and BFMC,
the LWR-PII PIE data, and CASMO-5M models. First,
Section 3 discusses the DA theory and the MLO method.
Next, Section 4.1 details the LWR-PII PIE data and the
calculation scheme for DA. The results of the DA are pre-
sented in Section 5. The posterior FYs, FY correlations,
and PIE data are all investigated. The prior and posterior
GEF FYs are also compared to those given in JEFF3.3
[36]. The posterior FYs were re-used in the CASMO-5M
simulations, both with the PIE data that were used to
adjust the model parameters and with PIE data that were
not part of the adjustment. We focused on the differences
between the MOCABA and BFMC adjustments as well
as on the effect of applying MLO.

2 GEF

GEF (GEneral description of Fission observables) [12,13]
is a semi-empirical model designed to give a complete
description of the fission process. It describes the excited
compound nucleus formation and all intermediate pro-
cesses until the formation of two separate nuclei at
scission. The developers of GEF highlight that it is not
intended to compete with microscopic models. Instead,
GEF is tailored to get the best performance in nuclear
technology. Empirical information is leveraged to glob-
ally describe fission quantities. Very detailed descriptions
of the inner-workings GEF’s coding are available in ref-
erences [12,13]. Here, we summarize the details that are
most important for this work and rely on abstractions of
key features of the code. This inherently leaves some holes
in the description, but must be done for the conciseness
of this document.
GEF uses a Monte-Carlo approach to generate, event-

by-event, the data for fission observables. An event starts
with the model parameters and the user’s input (e.g. the
properties of the excited nucleus). Then GEF calculates
the competing decays of the system, where the com-
petition is between fission and neutron/photon/proton
emission. If fission is initiated, the fission fragment prop-
erties at scission are calculated. Then the de-excitation of
the fragments is calculated until they reach their ground
or isomeric state. For radioactive FPs, GEF computes β−
decay and will calculate cumulative FYs.
A great advantage and innovation of GEF is its ability

to generate covariances between fission observables, which
were traditionally not available. To do so, GEF samples
some of its model’s parameters, which were decided by the
code developers to be the most important. For each model
parameter sample set, the core of the code system that
was described previously is run to create a sample of FYs.
From the population of FYs, a covariance matrix is con-
structed. GEF assumes that the parameters are normally
distributed and independent. The independence assump-
tion is based on the fact that an additional correlation is
introduced when the whole FY distribution is normalized
[37]. Because GEF was constructed to include sampling, it
can be seamlessly integrated into MOCABA and BFMC.
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Table 1. Means and standard deviations of GEF model parameters in GEF2017/1.1 [38].

Input Parameter GEF Name Mean Std. Units
Shell position for S1 channel P DZ Mean S1 −0.18 0.1 Z
Shell position for S2 channel P DZ Mean S2 −0.460 0.1 Z
Shell position for S3 channel P DZ Mean S3 −0.37 0.1 Z
Shell position at Z ≈ 42 P DZ Mean S4 0.0 0.1 Z
Shell effect for S1 channel P Shell S1 −2.85 0.1 MeV
Shell effect for S2 channel P Shell S2 −4.4 0.1 MeV
Shell effect for S3 channel P Shell S3 −6.40 0.2 MeV
Shell effect at Z ≈ 42 P Shell S4 −0.9 0.05 MeV
Rectangular contribution to S2 channel width P A Width S2 12.5 5% Mass
Shell effect at mass symmetry Delta S0 0 0.1 MeV
Shell curvature for S1 channel P Z Curv S1 0.37 5% Z2/A
Shell curvature for S2 channel P Z Curv S2 0.1850 5% Z2/A
Shell curvature for S3 channel P Z Curv S3 0.156 5% Z2/A
Shell curvature at Z ≈ 42 P Z Curv SL 0.035 5% Z2/A
Weakening of the S1 shell T low SL 0.31 0.01 MeV
(~ω)eff for tunneling of S1 channel T low S1 0.32 0.01 MeV
(~ω)eff for tunneling of S2 channel T low S2 0.31 0.01 MeV
(~ω)eff for tunneling of S3 channel T low S3 0.31 0.01 MeV
(~ω)eff for tunneling at Z ≈ 42 T low S4 0.31 0.01 MeV
Width of fragment distribution in N/Z HOMPOL 1 10% MeV
Charge Polarization POLARadd 0.25 0.1 Z

The model parameters that are sampled in GEF and
their means and standard deviations are shown in Table 1.
These values are unique to the GEF2017/1.1 version of
the code [38]. They are changed with different distribu-
tions of GEF as it is modified and improved. Importantly,
these are not the only model parameters in GEF. There
are over 100 parameters, including things like the curva-
ture of the macroscopic potential energy. Those in Table 1
were deemed most important by the developers for the
production of covariance data.
GEF has the ability programmed into it to sample its

model parameters and estimate covariances between FYs.
Unfortunately, this option does not preserve FYs of each
random sample, it only returns the mean FYs and their
covariances. In other words, GEF does not automatically
output the distribution of the FYs, only their first two
moments. The distribution is interesting for this study
because it is non-Gaussian. To gain access to the distribu-
tion, the GEF code was modified so that it would give the
FYs for each sample. This is an important component of
this study and is emphasized again: the FYs for CASMO-
5 were not sampled from covariance matrices, rather they
were generated directly from sampling of the GEF model
parameters. Therefore, the covariance matrices were not
used at any point in the assimilation; they were another
output of GEF that was adjusted.

3 Data assimilation theory

DA incorporates experimental evidence, in a Bayesian
way, to combat the bias and uncertainty of a simulated
integral parameters [33]. The bias and uncertainty are
assumed to be caused by the nuclear data’s epistemic

uncertainties, which propagate through a code to the cal-
culated integral parameter [39]. DA adjusts the nuclear
data, and thereby reduces the bias and uncertainty of
the simulations, in a way that reflects the additional
knowledge of the integral experiments.
In our framework, we adjust the model parameters in

GEF with DA. GEF assumes a priori that the model
parameters, σ, follow the probability density function
shown in equation (1). p(σ) has mean values given by the
vector σ0 whose size is Nσ × 1 and where Nσ is the num-
ber of model parameters. The distribution is described
by the covariance matrix Mσ whose size is Nσ ×Nσ. In
GEF, the σ are assumed to be independent, i.e. Mσ is a
diagonal matrix, and to have a Gaussian distribution.

p(σ) ∝ exp
[
− 1

2
(σ − σ0)

TMσ
−1(σ − σ0)

]
. (1)

The experimental PIE data, E, are used in a likelihood
function, L(E|σ), that reflects the likelihood to measure a
specific E given model parameters σ. The performance is
the agreement between the PIE data that are calculated
with the FYs and the experimental PIE data. E is a vector
with size NE × 1, where NE is the number of experimental
data. It has the covariance matrix ME whose dimensions
are NE × NE .
With this prior and the likelihood, the posterior

model parameters’ distribution, p(σ′|E), is given by equa-
tion (2). The DA methods used in this study estimate
the maximum a posteriori distribution with two different
approaches, which are outlined in the subsequent sections.

p(σ′|E) ∝ L(E|σ)p(σ). (2)
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3.1 Monte Carlo Bayesian Analysis (MOCABA)

The MOCABA DA method finds the maximum a posteri-
ori distribution by assuming that the prior and likelihood
are multivariate Gaussian PDFs. This creates a conjugate
prior and allows for an analytical solution of equation (2).
While reference [25] states that an invertible variable
transformation could be used to handle non-Gaussian
PDFs, this technique was not pursued and the standard
methodology of MOCABA most commonly encountered
in the literature was used. Equation (3) gives L(E|σ)
as a multivariate Gaussian distribution. In the following,
C(σ0) is the function that relates the input space (GEF’s
model parameters) to the output space (the PIE data).
For this application, C(σ0) is the GEF code that creates
the FYs and the neutron transport code that takes the
FYs to calculate the FP concentrations. C(σ0) is a vec-
tor whose size is a NE × 1. It is also assumed to follow
a multivariate Gaussian distribution with MC being its
covariance matrix whose size is NE × NE .

L(E|σ) ∝ exp
[
− 1

2

(
E−C(σ0)

)T
ME

−1(E−C(σ0)
)]
.

(3)
To find the moments of the posterior distribution, one

must maximize p(σ′|E), which is equivalent to minimiz-
ing its negative logarithm [40]. The posterior mean of the
model parameters, σ′, is equation (4) and its covariance
matrix, M′

σ, is equation (5). Here, Mσ,C is the covari-
ance matrix of σ and C whose dimensions are Nσ ×NE .
Equations (4) and (5) have a symmetry with those used in
a generalize linear least squares (GLLS) approach to the
data assimilation [40,41]. In the case of GLLS, the terms
MC andMσ,C are estimated with first-order perturbation
theory.

σ′ = σ0 + Mσ,C

[
MC + ME

]−1[
E−C(σ0)

]
(4)

M′
σ = Mσ −Mσ,C

[
MC + ME

]−1
Mσ,C

T . (5)

MC and Mσ,C in equations (4) and (5) are then esti-
mated with the Monte Carlo method. First, the model
parameters are randomly sampled from their PDF. For
every random sample, σi, a simulation is done with it to
create a calculated value C(σi), or Ci. With N samples of
σ, Ci is evaluated N times to create a population of cal-
culated values: {C1, C2, . . . , CN}. This population set is
then used to estimate MC and Mσ,C with equations (6)
and (7), where C̄ and σ̄ are the population means of
C and σ.

M̂C =
1

N − 1

N∑
i=1

(
Ci − C̄

)(
Ci − C̄

)T (6)

M̂σ,C =
1

N − 1

N∑
i=1

(
σi − σ̄

)(
Ci − C̄

)T
. (7)

3.2 Backward Forward Monte Carlo (BFMC)

BFMC draws samples from the prior and weighs these
samples by the likelihood to compute σ′ and M′

σ. With

BFMC, one can assign any prior distribution and then
analytically evaluate the likelihood [42,43]. This is the
primary advantage of BFMC in comparison to MOCABA
in this application: it can account for the non-Gaussianity
seen in Figure 1. When using BFMC, a random sample
σi is first drawn from p(σ). It is then used in C(σ) to get
the random sample Ci. The agreement between Ci and E
is quantified with the cost function equation (8). Here, χ2

i
is the squared distance between Ci and E normalized by
ME.

χ2
i =

(
E−Ci

)T
ME

−1(E−Ci

)
. (8)

Each χ2
i is used to calculate a weight, wi, for that sam-

ple with equation (9). Smaller χ2
i values indicate better

agreement between E and Ci and create larger weights.
Samples with higher wi contribute more to adjustments
of σ, whereas those with smaller wi contribute less. Note
that equation (9) used by BFMC is identical to equa-
tion (3) by MOCABA, i.e. both assume a multivariate
normal likelihood.

wi = exp
(
− χ2

i /2
)
. (9)

The weights are then used to calculate weighted aver-
ages that are the posterior means and covariances for σ:
equations (10) and (11) for σ′ and M′

σ.

σ′ =

∑N
i=1 wi × σi∑N

i=1 wi
(10)

M′
σ =

∑N
i=1 wi × (σi − σ̄)(σi − σ̄)T∑N

i=1 wi
. (11)

When the χ2
i are large, weight degeneracy can occur

when applying BFMC. The majority of the weights are
zero or near zero-valued and only a few samples con-
tribute to the posterior. For the PIE data of this study
that have very large biases, we found this to occur.
Their χ2 calculated with σ0 was 1250. To counteract
weight degeneracy, we used the weight definition of equa-
tion (12). Each χ2

i is normalized with the minimum χ2,
χ2
min, of the sample set. A similar normalization was
shown in reference [43] to improve the weight distribu-
tion and the convergence rate of the posteriors and was
reported to account for model inaccuracies in DA. Dif-
ferent normalizations have been used in several other
studies. Reference [26] has wi = exp

(
− (χ2

i /χ
2
min)

2
)
and

reference [42] has wi = exp
(
0.5(−χ2

i + χ2
min)

)
. We did

not examine the difference between these variations in
this study, but this would be an interesting avenue for
future work. MLO, presented in the following section, can
also be considered as an approach to counteract weight
degeneracy.

wi = exp
(
− χ2

i /χ
2
min
)
. (12)

3.3 Marginal likelihood optimization

Certain, but not all, techniques account for inconsistency
by simply removing inconsistent integral parameters from
the DA [27,44]. They would have removed up to 75% of
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the PIE data in this study, which is a waste of resources
because significant time was spent in analyzing, model-
ing, and simulating the experiments. It is preferable to
keep these data and to address the inconsistency in a
continuous and statistically rigorous way.
We used the Marginal Likelihood Optimization (MLO)

approach to address inconsistent integral data [34,35,45,
46]. MLO is an empirical Bayesian procedure that re-
scales the uncertainty of an integral parameter so that
it is then consistent. MLO’s principle is that there are
numerous causes of inconsistency between C and E. It
may be caused by an underestimation of nuclear data
uncertainties, unaccounted for experimental uncertainty
or covariance, errors in neutronics modeling, etc. These
unknown sources of bias are accounted for with extra
uncertainty that makes C and E consistent. The added
uncertainty decreases the χ2, or improves the consistency.
Each extra uncertainty of all the integral parameters
becomes a covariance matrix, Mextra, for DA. In this
study, Mextra is a diagonal matrix with no covariance
terms whose size in NE×NE . Reference [34] discusses
how a fully correlated error term can be added if desired.
In this work, we assume that Mextra is diagonal and,
therefore, only extra variance terms are estimated.
To estimate the extra uncertainty requires redefining

χ2 as equation (13) and calculating marginal the likeli-
hood function, p(E), of equation (14). Here, M̂C is found
with equation (6). Then equation (14) is maximized, or its
negative logarithm is minimized, with the diagonal vari-
ance terms of Mextra being tunable hyperparameters. We
perform the minimization with gradient descent, with the
boundary condition being that the added uncertainties
cannot be negative.

χ2 =
(
E− C̄

)T (
ME + M̂C + Mextra

)−1(
E− C̄

)
(13)

p(E) =
exp(−χ2/2)√

(2π)Ndet
(
ME + M̂C + Mextra

) . (14)

4 Methods and approach

4.1 LWR proteus phase II: PIE data

The PIE data that are the integral parameters in this
study come from the LWR Proteus Phase II (LWR-PII)
experimental campaign [23,24]. The integral data were
concentrations of FPs in spent fuel normalized to the total
mass of uranium (all isotopes) in the fuel. Thirty-three FP
concentrations of a variety of elements with varying mass
numbers (A) were used in the adjustment.
The training data in the DA were the FP concentrations

of a UO2 sample, U1, with a burnup of ∼38 MWd/kg. The
posterior GEF FYs were used again in simulations of U1
to verify if there was improvement in its predicted FP con-
centrations relative to the prior. We tested the posterior
FYs with simulations of two other fuel samples: U2 and
M1. This quantified the performance of the posterior FYs
for systems that were not part of the training data, i.e. it
tested if the posterior FYs were over-fit to U1. U2 assessed

how the posterior FYs performed on another UO2 fuel
with a higher burnup (∼58 MWd/kg). M1 tested how the
posterior FYs extrapolated to MOX fuel (∼21 MWd/kg)
rather than UO2.
Through examination of the original experimental data

from 2000 to 2004, we reconstructed the covariances
between the measured FP concentrations that were not
available in the official documentation. The measure-
ments involved dissolving the fuel samples in HNO3 and
the residue from this dissolution in a HCl/HNO3 mix-
ture. The solutions were then used with a combination of
high-performance liquid chromatography (HPLC) and a
multicollector inductively coupled plasma mass spectrom-
eter (MC-ICP-MS) to measure the nuclide concentrations.
HPLC was used to separate chemical elements, and then
mass spectrometry (MS) was used to measure the iso-
topic concentrations. Certain isotopes that were present
in very small concentrations were measured with γ-ray
spectrometry.
The MS was calibrated with isotope dilution analyses

(IDA). The fuel sample had an unknown amount of ele-
ment with a measurable isotopic composition. A reference
sample (a so-called “spike”) with a certified element mass
and known isotopic composition was added. Because these
two samples were mixed, the isotopic composition of that
element was changed. The new ratios of isotopes were
measured in the mixture. Next, by knowing the isotope
concentrations in the fuel sample, the spike sample (which
was certified), and the mixture, and by knowing the mass
of the spike sample and the amount of sample and spike
mixed together (through weighing), the concentration of
the element in the fuel sample can be calculated.
Concerning the uncertainties in this process, there was a

random error in the measurements that arises from unpre-
dictable or stochastic variations in quantities. Systematic
errors remained constant or varied in a predictable way
over the course of a number of analyses. For instance,
all isotopes of an element used the same spike. Uncer-
tainty in the spike was then common to all isotopes of
an element. The uncertainty of the measured elemen-
tal compositions was typically less than 0.1%, but could
have been larger for isotopes with low abundance. This
uncertainty was calculated as the standard deviation of
four repeated measurements of unspiked samples. For the
isotopic concentrations, the uncertainties ranged between
0.3% and 1%. The uncertainties came from the statistical
errors, the weighing of the fuel and spike solutions, and
the uncertainty of the compositions and concentrations of
the spike materials. The uncertainty of the γ-spectroscopy
measurements was 5–10%.
The final experimental value was the mass of the isotope

relative to the total mass of uranium, in units of mg/g.
This concentration, ε, of isotope i is given in equation (15).
wi is the measured weight percent of that isotope, Utot is
the mass of uranium per total mass of fuel (mg/g), and
ηj is the mass of the element j (measured with IDA) that
the given isotope belongs to per total mass of fuel (g/g).

εi = wi
ηj
Utot

. (15)
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Fig. 2. Experimental correlations between the fission products
in fuel sample U1. The miscellaneous FPs include Ag-109, Rh-
103, Ru-101, Tc-99, Mo-95, and Sr-90.

With the sources of uncertainty in the ε values defined,
they were used in equation (16) to calculate the vari-
ances and covariances in the matrix Vout. Equation (16)
is the linear error propagation formula with J being the
Jacobian matrix of first-order partial derivatives of equa-
tion (15) and Vin being the covariance matrix of the w,
Utot, and η values. It was assumed that w, Utot, and η
were independent. Additionally, the fuel mass common in
Utot, and η canceled out in the numerator and denomina-
tor. This means that correlations between ε values were
created only by the common terms Utot and η.

Vout = JTVinJ (16)

After applying this formulation, the correlation matrix
can be found, and is shown in Figure 2 for fuel sample U1.
The covariances were then used as ME in the DA equa-
tions. All of the measured concentrations have a degree of
correlation induced by the total-uranium normalization.
The nuclides of an element are also highly correlated by
the use of a common, spiked reference sample during liquid
chromatography and mass spectrometry.

4.2 Computational approach

CASMO-5M modeled the LWR-PII fuel samples and pre-
dicted their FP concentrations after burnup. We used
models of LWR-PII that are described in detail in ref-
erence [24]. CASMO-5M used the ENDF-B/VII.1 nuclear
data library for neutron transport [47]. The tool SHARK-
X [48–51] transferred the FY samples to CASMO-5M.
GEF2017/1.1 [38] created FY data for the thermal fission
(incident neutron energy, En, of 0.0253 eV) of U-235, Pu-
239, and Pu-241 and the fast fission (En = 500 keV) of
U-238.
GEF’s model parameters were sampled 10,000 times

from their PDF. Then GEF was run 10,000 times with
these samples to create a sample set of FYs. Each GEF run
used 2E5 fission events. Subsequently, 10,000 CASMO-5M
simulations of LWR-PII’s FP concentrations were done

with these FYs. With this distribution and population set
of calculated values, the BFMC and MOCABA methods
were applied to update GEF’s model parameters. With
the posterior model parameters, GEF was re-run 500
times to produce 500 posterior FY samples, and finally
CASMO-5M was re-run 500 times with these posterior
FYs.
The DA only considered uncertainties that originated

from GEF’s FYs. Certainly, there were other uncertainties:
nuclear data uncertainties from cross sections and other
fission observables, and technological uncertainties asso-
ciated with the enrichment, fuel temperature, cladding
thickness, and moderator density. It was somewhat arbi-
trary to only include FY uncertainties as SHARK-X could
have accommodated the unaccounted for uncertainties.
However, by defining the FYs as the only source of uncer-
tainty, we isolated their effect and can focus solely on
them.
Importantly, the CASMO-5M simulations had model

inaccuracies. For example, the irradiation history was
approximated in a step-wise manner using a nodal core
simulator with pin-power reconstruction. Furthermore,
the models were in 2D and had reflective boundary condi-
tions. Additionally, they did not account for the exact
vertical location of the fuel sample on the fuel rod.
Moreover, CASMO-5M used simplified decay chains that
did not have all the FYs made by GEF. We had to
parse GEF’s FYs and simplify them to be compatible
with CASMO-5M, which was another source of model
inaccuracy.
Some of these model inaccuracies could have been miti-

gated with a Monte-Carlo neutron transport code. This
would allow a full representation of the geometry and
to account for all FYs that GEF outputs. Monte-Carlo
neutron transport, of course, would come with the dis-
advantage of increased computational cost and previous
studies of the LWR-PII fuel samples with such codes [52]
did not show significant improvements in the bias rela-
tive to using CASMO-5. Because MOCABA and BFMC
require many model runs, Monte-Carlo neutron transport
codes were, therefore, not pursued.
The model inaccuracies and missing uncertainties man-

ifest as inconsistent integral data, i.e. biases that are not
explained by uncertainties. The inconsistencies, if unac-
counted for, can cause non-physically based adjustments
to the model parameters. Because there are so many possi-
ble sources of bias and missing uncertainty, we used MLO
to mitigate their effect on the adjustments.
Our framework to apply BFMC is summarized below,

1. Sample the GEF model parameters.
2. Run GEF with this model-parameter sample set to
produce a sample set of FYs.

3. Run the CASMO-5M model of fuel sample U1 with
each FY sample to create samples of calculated FP
concentrations.

4. Use MLO to account for inconsistencies between the
experiment and calculation.

5. Calculate the weights with equation (12) and
the sample set of calculated FP concentrations,
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experimental mean values, and experimental covari-
ance matrix.

6. Use the weights to update the model parameter
distributions with equations (10) and (11).

7. Resample the posterior GEF model parameters and
re-run GEF to create posterior FYs.

8. Run the CASMO-5M models with the posterior FYs.

When Mextra was calculated with MLO, it was incor-
porated into χ2

i as shown in equation (17). These χ2
i were

then used to calculate the weights with equation (12) and
finally to update the GEF model parameters.

χ2
i =

(
E−Ci

)T (
ME + Mextra

)−1(
E−Ci

)
. (17)

To apply MOCABA, steps 1-5 are identical to BFMC
with the following subsequent steps,

6. Estimate M̂C and M̂σ,C, with equations (6) and (7),
from the σi and Ci.

7. Use M̂C and M̂σ,C to update the GEF model
parameter distributions with equations (4) and (5)
adding the Mextra calculated by MLO to ME.

8. Resample the posterior GEF model parameters and
re-run GEF to create posterior FYs.

9. Run the CASMO-5M models with the posterior FYs.

Both methods, MOCABA and BFMC, update the dis-
tribution of model parameters. In order to see the effect
of the assimilation on the calculated FP concentrations
and to compare MOCABA and BFMC, it was necessary
to resample the model parameters with σ′ and M′

σ and
re-run GEF. This created a sample set of FYs that was
then used in CASMO-5M. MOCABA, by its nature,
gives a multivariate normal posterior distribution. To test
MOCABA then required sampling its posterior model
parameters from multivariate normal distributions. Any
correlation terms that arose in M′

σ were retained in the
sampling. In order to compare with MOCABA, we esti-
mated the posterior mean vector and covariance matrix
with equations (10) and (11), respectively, to construct
a multivariate normal distribution from which we then
resampled.

5 Results

In this section, we present the prior and the posteriors that
were calculated with the previously detailed approach.
Section 5.1 presents the prior calculated FP concentra-
tions and the results from applying MLO. Section 5.2
compares the MOCABA and BFMC adjustments of the
FY data that were produced with the adjusted model
parameters. There, the GEF FYs are compared to the FYs
of JEFF3.3. The posterior FP concentrations, calculated
with the posterior FYs, are also presented. Section 5.3
discusses the effect of using MLO.

5.1 Prior and MLO

First, steps 1–4 from Section 4.2 were done: the prior dis-
tribution of calculated FP concentrations was calculated

and MLO was applied. The largest bias, or C/E – 1, of
any FP concentration was 64% for Ru-101. The average
absolute value of all biases was 26%. The uncertainties
created by the FY data were as large as 56% for Gd-
160 and averaged at 21%. Importantly, some biases were
very inconsistent, like for Rh-103, Ru-101, or Tc-99. We
calculated χ2 to measure the consistency of the whole
PIE data set. It was defined as equation (18), where
MC was calculated with equation (6). The χ2 per degree
of freedom (DoF) was 38. This was far from the 1.0 value
expected especially given that the standard deviation per
DoF (

√
2NE/NE) of the χ2 distribution is 0.3.

χ2 =
(
E− C̄

)T (
ME + M̂C

)−1(
E− C̄

)
(18)

The χ2 indicated that a large degree of inconsistency
existed between C and E. This inconsistency may have
been caused by ignoring sources of uncertainty or model
inaccuracies in the simulations. As previously discussed,
such an inconsistency may induce unrealistic adjustments
of the model parameters and FYs in MOCABA. It may
also cause a marginal adjustment to occur with BFMC.
The MLO method was applied to improve the consistency
by adding extra uncertainty to integral parameters. The
results from MLO are presented in Figure 3. MLO added
extra uncertainties to the isotopes that showed large
degrees of inconsistency, e.g. Eu-154, Cs-134, Rh-103, Ru-
101, or Tc-99. The χ2, recalculated with Mextra as in
equation (13), becomes 0.7 per DoF. This χ2 is within the
standard deviation of the χ2 distribution for 33 DoF.
Recall that MOCABA replaces the exact prior distri-

bution of the observables obtained by propagating the
parameter prior distribution by a multivariate normal dis-
tribution. Any non-normality may bias the adjustments.
We applied the Shapiro–Wilks test [53] to quantify how
likely it was that the C distributions were drawn from
Gaussian PDFs. It gives a p-value that represents the
probability to obtain a more extreme value of the test
statistic than the actually obtained. The p-value is then
compared to a threshold α level. Here, α was chosen to
be 0.05, meaning that if the p-value ≤ 0.05, we rejected
the null hypothesis. We also evaluated the significance of
the tail of each C distribution with the Pearson skewness.
For a Gaussian distribution, whose left and right tails are
symmetric, the skewness is 0. A positive or negative skew-
ness indicates asymmetry in the distribution. The p-values
and skewness of each C are given in Figure 4. Only three
FPs pass the Shapiro-Wilks test: Nd-146, Nd-145, and
Nd-144. That means that 30 of 33 FPs can be classified
as non-Gaussian. The skewness helps to show which FPs
are most non-Gaussian, and these are the Gd, Eu, and Sm
isotopes along with Nd-150 and Sb-125.

5.2 BFMC vs. MOCABA

This section presents the posterior model parameters,
independent FYs, and calculated FP concentrations from
BFMC and MOCABA. The FYs were produced by exe-
cuting GEF with the adjusted model parameters given
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Fig. 3. Biases and uncertainties for the FP concentrations of U1 after applying MLO. C values were taken as the mean of the
distribution.

Fig. 4. Skewness and p-values from a Shapiro-Wilks normality test for the prior calculated FP concentrations of fuel sample U1.

Fig. 5. Correlation matrices of the 21 posterior GEF-model parameters. Each correlation coefficient has its 95%-bootstrap-
confidence interval over-laid on it.

by BFMC and MOCABA. The posterior FYs are com-
pared to JEFF3.3 data, which do not have associated
covariances. Only the FYs of Pu-239 are presented to be
concise, although the FYs of U-235, U-238, and Pu-241
were also adjusted along with the covariances between
these isotopes.

5.2.1 Model parameter adjustments

Table 2 gives the adjustments of GEF’s 21 model param-
eters using BFMC and MOCABA. Their standard errors
were estimated with 500 bootstrap samples [54] and are
shown as 95% confidence-intervals. In the case of BFMC,
the posterior distributions can be non-Gaussian. Com-
paring the mean and standard deviation of a Gaussian
(MOCABA) and not-Gaussian (BFMC) can be mislead-
ing but we do so to illustrate differences in the posterior

FYs and calculated FP concentrations that are presented
in later sections. Many of the model parameters were
not adjusted in a statistically significant way. Those
that did were associated with the shell positions of the
fission channels (P DZ Mean S#), the shell curvatures
(P Z Curv S#), the rectangular contribution to the S2
channel width (P A Width S2), the shell curvature for
the S3 channel (P Shell S3), and the charge polarization
(POLARadd). Among the fission channels, the S3 channel
had its model parameters adjusted to the largest degree.
Noticeably, the posterior BFMC model parameters had
larger confidence intervals than those from MOCABA,
which will be discussed further below. Only the parame-
ter P A Width S2 had statistically significant differences
between MOCABA and BFMC.
The DA also produced correlations between the model

parameters, which are given in Figure 5, that did not
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Table 2. Prior and posterior means and standard deviations of GEF’s model parameters, shown with 95% confidence
intervals that were estimated with bootstrap sampling.

Mean Standard deviation
GEF Parameter Prior MOCABA BFMC Prior MOCABA BFMC
P DZ Mean S1 (Z) −0.18 −0.14 ± 0.01 −0.15 ± 0.02 0.10 0.08 ± 0.00 0.09 ± 0.02
P DZ Mean S2 (Z) −0.46 −0.48 ± 0.01 −0.48 ± 0.03 0.10 0.08 ± 0.00 0.08 ± 0.01
P DZ Mean S3 (Z) −0.37 −0.32 ± 0.01 −0.30 ± 0.03 0.10 0.08 ± 0.00 0.08 ± 0.02
P DZ Mean S4 (Z) 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 0.1 ± 0.0 0.1 ± 0.0
P Z Curv S1 (Z2/A) 0.37 0.37 ± 0.01 0.37 ± 0.01 0.019 0.017 ± 0.000 0.008 ± 0.014
P Z Curv S2 (Z2/A) 0.1850 0.1852 ± 0.0006 0.1886 ± 0.0029 0.0093 0.0088 ± 0.0001 0.0076 ± 0.0016
P A Width S2 (Mass) 12.5 11.9 ± 0.0 12.2 ± 0.2 0.628 0.433 ± 0.01 0.506 ± 0.095
P Z Curv S3 (Z2/A) 0.156 0.155 ± 0.000 0.153 ± 0.002 0.008 0.007 ± 0.000 0.007 ± 0.001
P Z Curv S4 (Z2/A) 0.035 0.035 ± 0.000 0.035 ± 0.000 0.002 0.002 ± 0.000 0.002 ± 0.000
P Shell S1 (MeV) −2.85 −2.85 ± 0.00 −2.85 ± 0.03 0.1 0.08 ± 0.00 0.09 ± 0.02
P Shell S2 (MeV) −4.4 −4.4 ± 0.0 −4.4 ± 0.0 0.1 0.07 ± 0.0 0.09 ± 0.03
P Shell S3 (MeV) −6.4 −6.3 ± 0.0 −6.33 ± 0.05 0.20 0.12 ± 0.01 0.13 ± 0.04
P Shell S4 (MeV) −0.9 −0.9 ± 0.0 −0.9 ± 0.0 0.05 0.05 ± 0.00 0.06 ± 0.02
T low S1 (MeV) 0.32 0.32 ± 0.0 0.32 ± 0.0 0.01 0.01 ± 0.00 0.01 ± 0.00
T low S2 (MeV) 0.31 0.31 ± 0.0 0.31 ± 0.0 0.01 0.01 ± 0.00 0.01 ± 0.00
T low S3 (MeV) 0.31 0.31 ± 0.0 0.31 ± 0.0 0.01 0.01 ± 0.00 0.01 ± 0.00
T low S4 (MeV) 0.31 0.31 ± 0.0 0.31 ± 0.0 0.01 0.01 ± 0.00 0.01 ± 0.00
T low SL (MeV) 0.31 0.31 ± 0.0 0.31 ± 0.0 0.01 0.01 ± 0.00 0.01 ± 0.00
Delta S0 (MeV) 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 0.1 ± 0.00 0.1 ± 0.02
HOMPOL (MeV) 1.0 1.0 ± 0.0 1.0 ± 0.0 0.1 0.1 ± 0.00 0.09 ± 0.02
POLARadd (Z) 0.25 0.28 ± 0.0 0.27 ± 0.0 0.1 0.05 ± 0.00 0.05 ± 0.01

Fig. 6. CDF of BFMC’s weight distribution.

exist in the prior. The 95% confidence intervals from
bootstrapping are also given for each correlation coef-
ficient. Figure 5 shows large differences between the
MOCABA and BFMC matrices. BFMC shows much
larger degrees of inter-correlation than MOCABA. How-
ever, the confidence intervals show that the BFMC
correlations also have a much larger degree of uncertainty.
Many of them cannot be declared to be statistically sig-
nificant. With MOCABA, some model parameters devel-
oped correlations, especially the P Shell parameters and
POLARadd.
Previous studies [33] have shown that the combined

effects of weight degeneracy and too low sample size
can create large uncertainties in the M′

σ calculated with
BFMC. The degree of weight degeneracy can be qualified
by examining the weight distribution of the sample set.

Figure 6 gives the cumulative density function (CDF) of
the weights that were calculated with the 10,000 samples
and equation (12). The figure shows that many of the
weights were, in a practical sense, zero-valued. The CDF,
shown in Figure 6, shows that only ∼1% of the weights, or
100 out of 10,000 samples, were significantly greater than
0. While this does not display a total weight degeneracy,
it caused an insufficiently converged M′

σ with BFMC and
thereby explains the large confidence intervals of the cor-
relations it produced. In Section 5.3, we show that BFMC
without MLO had more significant weights and its poste-
rior weighted averages were more highly converged. The
off-diagonal correlations in M′

σ then diminished.

5.2.2 FY adjustments

Figure 7 compares the prior and posterior independent
FYs of Pu-239. It shows the relative difference between
the prior and posterior for both the means and the stan-
dard deviations. Examining the relative differences of the
means, the adjustments from prior to posterior are largest
at A = 130–160 and symmetrically at A = 80–110. The
areas of large adjustment correspond to regions where
PIE data were densest; most of the FP concentrations
were isotopes of Nd, Eu, Sm, and Gd, all of which have
A > 140. There was strong agreement between the FYs
of MOCABA and BFMC for A = 90–150. Disagreements
occurred at A < 80 and A > 160, but these are rare yields
with poor statistics (100% uncertainty) in the Monte
Carlo process of GEF. Given their large uncertainties, we
expect larger disagreements in the posteriors. Returning
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Fig. 7. Relative differences in the means and relative standard deviations of Pu-239 independent FYs.

Fig. 8. Correlations between independent FYs of Pu-239.

to the yields associated with A = 80–160, in general,
MOCABA created larger adjustments than BFMC with
peaks at A ≈ 115 and A ≈ 125. These adjustments were
significantly affected by the posterior model parameters
associated with the S3 channel, as it is dominant for FYs at
these A. The shell position for the S3 channel was adjusted
by 21% with MOCABA and 15% with BFMC. The shell
effect of the S3 channel also saw adjustments of −2% and
−1% with MOCABA and BFMC, respectively. Further
discussion of the causes of these trends is given below.
The adjusted standard deviations had similar trends.

First, the reductions in uncertainty were largest at A =
135–160 and symmetrically at A = 80–105, where there
were the most experimental integral data. For both the
MOCABA and BFMC posteriors, at the A correspond-
ing to the centers of the different fission channels, there
were sharp reductions in the FY uncertainty. In the case
of BFMC, the FYs in the region dominated by the S3
and S4 channels, at A ≈ 110–130, increased in uncer-
tainty. Typically for linear and multivariate cases, we
expect no change or a decrease in uncertainty after a
Bayesian update. However, the GEF model is non-linear
and there were significant correlations between BFMC’s
posterior model parameters, helping to lead to increased
standard deviations of the FYs. Through correlation with
P Shell S3, this increase led to larger uncertainties in the
FYs at 110 < A < 130. The FYs of U-235, U-238, and
Pu-241 also showed an increase in uncertainty at this
region. Again for very rare yields, at A < 90 and A > 150,
there were more disagreements between MOCABA and
BFMC and large changes to uncertainties. These adjust-
ments were not reliable due to the limited statistics of
GEF for these FYs.

Figure 8 presents the prior and posterior correlation
matrices for the independent FYs of thermal fission in
Pu-239. The prior correlation matrix has large posi-
tive correlations (red) between FP pairs. It also has
strong correlations slightly off the main diagonal that
come from FPs that are dominated by the same fis-
sion channel and are consequently highly correlated to
the same model parameters. The within-channel correla-
tions are also seen between the light and heavy humps
of the FY spectrum. The matrix also has large degrees
of anti-correlation (blue) between fission channels. For
example, the FYs between the S2 and S1, and between
the S1 and S4 channels show anti-correlation. By incor-
porating experimental data, BFMC and MOCABA both
reduced the degree of correlation between the FY data.
In large part, the trends in the correlations in the prior
were retained, only the extent of correlation and anti-
correlation were affected. Compared to BFMC, MOCABA
more significantly reduced correlations, particularly the
anti-correlation terms induced by the S1 and S4, and the
S3 and S4 fission channels.
Figure 9 provides the prior and posterior correlations

between FYs of thermal fission in U-235 and Pu-239. As
GEF was run with the same sets of model parameters to
produce each nuclide’s FYs, their data became correlated
through the common inputs. Similar to the previously
outlined behavior, large degrees of positive correlation
appeared between the FYs of the two nuclides due to influ-
ences of the same fission channels. Similarly, competing
fission channels created anti-correlations. From prior to
posterior, the trends are similar: decreased degrees of cor-
relation and anti-correlation, with MOCABA decreasing
the correlation to a larger extent than BFMC.
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Fig. 9. Correlations between the independent FYs of U-235 and Pu-239.

Fig. 10. Relative differences between GEF and JEFF3.3 of the means and standard deviations of Pu-239 independent FYs.

Figure 10 compares the GEF FYs with those given in
JEFF3.3. The relative differences are plotted for the FY
means and for the standard deviations. In general, we
observed relative differences of the mean values at −40
to +40%. The biggest improved agreement occurred at 85
< A < 95 and 135 < A < 150. These improvements can
be connected to where the experimental data were con-
centrated. Approximately 70% of the integral data had
A > 135. With a large concentration of evidence in this
area, the adjustments were the most significant there.
GEF’s prior uncertainties tended to be larger compared to
JEFF3.3. Similar to the means, the reductions in uncer-
tainty were largest at 85 < A < 95 and 135 < A < 150,
where the PIE data were densest. MOCABA produced
smaller uncertainties than BFMC that were closer to those
from JEFF3.3.
Table 3 gives the comparison shown in Figure 10 sum-

marized over the whole independent FY data set for
thermal fission of Pu-239, U-235, and Pu-241 and fast fis-
sion of U-238. In JEFF3.3 are given for a neutron energy
of 400 keV, while GEF was run for a neutron energy
of 500 keV. For the relative difference of the mean FYs,
the mean of the absolute value of the relative differences
was taken. In the case of Pu-239 and Pu-241, there was
improved agreement between the GEF FYs and JEFF3.3.
For the means, there were not significant differences
between the MOCABA and BFMC posteriors. MOCABA
made larger uncertainty reductions than BFMC. For
Pu-241, the GEF posteriors with MOCABA had smaller
uncertainties than JEFF3.3, i.e. negative average relative
differences in the standard deviations. The agreement of
GEF with JEFF3.3 deteriorated for U-235 and U-238,
although both did still have their uncertainty reduced.

Table 3. Comparing GEF independent FYs (prior &
posterior) to JEFF3.3.

Avg. Abs. Avg. Rel.
Bias (%) Std. (%)

Pu-239
Prior 16 100
BFMC 12 46
MOCABA 13 4.3

U-235
Prior 12 160
BFMC 13 93
MOCABA 16 42

Pu-241
Prior 33 80
BFMC 26 18
MOCABA 26 −13

U-238
Prior 37 17
BFMC 41 12
MOCABA 43 30

Noticeably, GEF produced 160% larger uncertainties for
U-235, relative to JEFF3.3. This is due to GEF’s design
and to the quality and abundance of U-235 experimen-
tal FYs. GEF was designed to be as general as possible:
one model and one set of model parameters predicts
with good accuracy the fission observables of isotopes like
U-235, or less commonly encountered isotopes like Bk-
230 or Fm-256. For this generality, GEF sacrifices some
accuracy for an isotope like U-235, which is very well
characterized by experimental data. The JEFF3.3 FYs,
which profit from this large quantity of high quality U-235
experiments, have smaller reported uncertainties.
The degraded agreement of the FYs of U-235 has not yet

been completely explained by the authors. In part, it may
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Fig. 11. Prior and posterior biases of the FP concentrations of fuel sample U1.

be due to the fact that when the GEF model parameters
were first set by the developers, i.e. the assessment of the
prior model parameters, they used a large amount of high
quality U-235 data. When we incorporated the PIE data,
we lost some calibration to U-235 in order to improve the
FY data of Pu-239, Pu-241, and U-238. Alternatively, the
degradation may simply be a statistical effect. All of the
FY data, on average, saw an improved agreement between
GEF and the nuclear data libraries. While this is the case
on average, particular data may have worsened. Given
that, for U-235, the relative difference of JEFF3.3 from
GEF increased only by +4% and +2% with MOCABA
and BFMC, respectively, these data could be the statis-
tically unlucky ones that worsened. Given the complexity
of the data set, it has not yet been possible to make a
definitive conclusion about the U-235 FYs. Future studies
with different fuel samples, possibly with lower burnups
to emphasize U-235 fission, would provide clarification.

5.2.3 Posterior FP concentrations

We begin with how the posterior FYs performed in the
CASMO-5M simulations of fuel sample U1, which was the
training data used to adjust the GEF model parameters.
The prior and posterior biases of the FP concentrations
are presented in Figure 11. The average absolute value of
the prior bias was 26% and the average uncertainty of the
calculated FP concentrations was 21%. With BFMC FYs,
the average absolute value of the bias was 15% and the
uncertainty of the posterior calculated values was 14%.
For MOCABA, the average absolute value of the bias was
14% and the average standard deviation of the posterior
FP concentrations was 14%.
Next, we examine how the adjusted FYs performed to

estimate FP concentrations that were not part of the
training data, i.e. FPs concentrations from different fuel
samples. These fuel samples are UO2 (U2) and MOX M1,
whose burnups are ∼58 and ∼22 MWd/kg, respectively.
This tests for over-fitting of the model parameters to fuel
sample U1. If they were indeed overfit, the posterior biases
would be worse than the prior. The biases and uncertain-
ties are summarized in Table 4. Here, the absolute value of
the biases and the relative standard deviations of the cal-
culated values were averaged across all data. For all fuel
samples, the bias improved from prior to posterior. Addi-
tionally, the MOCABA posterior FYs improved the bias
to a larger extent than the BFMC FYs. Similarly, all three

Table 4. Average absolute value of the bias and average
relative standard deviation of posterior calculated nuclide
concentrations. The C values used in the bias estimation
were calculated as the mean of the possibly non-Gaussian
distribution.

Avg. Abs. Avg. Rel.
Bias (%) Std. (%)

U1
Prior 26 21
BFMC 15 14
MOCABA 14 14

U2
Prior 19 19
BFMC 8.7 13
MOCABA 7.0 11

M1
Prior 23 21
BFMC 14 15
MOCABA 12 12

fuel samples had the uncertainty associated with their cal-
culated values reduced from prior to posterior. MOCABA
reduced the relative standard deviation to a larger extent
than BFMC. From these results, we can conclude that the
adjustment was not over-fit because there was a similar
performance for U2 and M1. For all three fuel samples, the
average posterior standard deviations were smaller than
the NEA-defined target accuracy of 20%, although certain
isotopes like Gd-160 still exceeded this value.

5.3 Effect of MLO

In this section, we present the adjusted model parameters,
posterior FYs, and posterior calculated FP concentrations
when they were calculated without MLO extra uncertain-
ties, using both BFMC and MOCABA. These results are
compared to those from the previous section where MLO
was used. The posteriors are compared to assess the effect
that MLO had on the adjustments and to investigate
the importance of accounting for the inconsistencies of
integral data.

5.3.1 Posterior model parameters

Table 5 gives the posterior model parameters when BFMC
and MOCABA were used without applying MLO. The
table shows some clear differences from Table 2 that
are statistically significant in terms of the bootstrap-
estimated 95% confidence intervals. With BFMC, only for
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Table 5. Prior and posterior means and standard deviations of GEF’s model parameters without using MLO. 95%
confidence intervals are shown that were estimated with bootstrap sampling.

Mean Standard Deviation
GEF Parameter Prior MOCABA BFMC Prior MOCABA BFMC
P DZ Mean S1 (Z) −0.18 −0.43 ± 0.05 −0.21 ± 0.01 0.1 0.06 ± 0.0 0.09 ± 0.01
P DZ Mean S2 (Z) −0.46 0.02 ± 0.06 −0.48 ± 0.01 0.1 0.07 ± 0.0 0.09 ± 0.01
P DZ Mean S3 (Z) −0.37 0.013 ± 0.06 −0.34 ± 0.01 0.1 0.08 ± 0.0 0.1 ± 0.0
P DZ Mean S4 (Z) 0.0 0.0 ± 0.1 0.0 ± 0.0 0.1 0.1 ± 0.0 0.1 ± 0.0
P Z Curv S1 (Z2/A) 0.37 0.38 ± 0.01 0.37 ± 0.00 0.02 0.02 ± 0.00 0.02 ± 0.00
P Z Curv S2 (Z2/A) 0.1850 0.1461 ± 0.0060 0.1849 ± 0.0009 0.0093 0.0082 ± 0.0001 0.01 ± 0.00
P A Width S2 (Mass) 12.5 9.59 ± 0.29 12.3 ± 0.1 0.628 0.406 ± 0.013 0.624 ± 0.042
P Z Curv S3 (Z2/A) 0.156 0.189 ± 0.006 0.155 ± 0.001 0.008 0.006 ± 0.000 0.008 ± 0.001
P Z Curv S4 (Z2/A) 0.035 0.035 ± 0.001 0.035 ± 0.000 0.002 0.002 ± 0.000 0.002 ± 0.000
P Shell S1 (MeV) −2.85 −2.84 ± 0.05 −2.87 ± 0.01 0.1 0.08 ± 0.00 0.08 ± 0.00
P Shell S2 (MeV) −4.4 −4.5 ± 0.0 −4.4 ± 0.0 0.1 0.07 ± 0.00 0.07 ± 0.01
P Shell S3 (MeV) −6.4 −6.8 ± 0.1 −6.3 ± 0.0 0.20 0.12 ± 0.01 0.16 ± 0.01
P Shell S4 (MeV) −0.9 −0.9 ± 0.0 −0.9 ± 0.0 0.05 0.05 ± 0.00 0.05 ± 0.00
T low S1 (MeV) 0.32 0.31 ± 0.01 0.32 ± 0.0 0.01 0.01 ± 0.00 0.01 ± 0.00
T low S2 (MeV) 0.31 0.31 ± 0.01 0.31 ± 0.0 0.01 0.01 ± 0.00 0.01 ± 0.00
T low S3 (MeV) 0.31 0.27 ± 0.01 0.31 ± 0.0 0.01 0.01 ± 0.00 0.01 ± 0.00
T low S4 (MeV) 0.31 0.31 ± 0.01 0.31 ± 0.0 0.01 0.01 ± 0.00 0.01 ± 0.00
T low SL (MeV) 0.31 0.31 ± 0.01 0.31 ± 0.0 0.01 0.01 ± 0.00 0.01 ± 0.00
Delta S0 (MeV) 0.0 0.0 ± 0.1 0.0 ± 0.0 0.1 0.1 ± 0.0 0.1 ± 0.0
HOMPOL (MeV) 1.0 1.2 ± 0.1 1.0 ± 0.0 0.1 0.1 ± 0.0 0.1 ± 0.0
POLARadd (Z) 0.25 0.36 ± 0.03 0.18 ± 0.01 0.1 0.05 ± 0.0 0.08 ± 0.01

Fig. 12. Correlations between the model parameters when MLO is not used. Each correlation coefficient has its 95%-bootstrap-
confidence interval over-laid on it.

the parameters P DZ Mean S1 and POLARadd can these
differences, both for the means and standard deviations,
be considered statistically significant within the 95%
confidence intervals. In contrast, MOCABA displayed
significant differences between the means and standard
deviations of many model parameters. When MLO was
not used, they tended to be smaller than when MLO
was used, for instance for P DZ Mean S1, P DZ Mean S2,
P A Width S2, P Shell S3, and POLARadd. That shows
how MLO constrained the model parameters’ uncertainty
reductions in the presence of inconsistent PIE data.
Figure 12 gives the posterior correlation matrices of

the model parameters when MOCABA and BFMC were
applied without using MLO. These matrices should be

Fig. 13. CDFs of BFMC’s weight distributions when MLO was
and was not applied.
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Fig. 14. The left y-scale shows Relative differences between the prior and posterior means and the relative standard deviations
(relative to their perspective means) FYs of Pu-239 calculated when MLO was and was not used. The right y-scale (in red) shows
the added relative standard deviation to the PIE data by MLO, with the size of red dot being proportional to the skewness of the
calculated value’s PDF.

compared to those previously presented in Figure 5. For
MOCABA, there were not large differences between the
correlations when MLO was and was not applied. The
BFMC model-parameter correlation matrices did show
large differences: the large degrees of correlation and anti-
correlation seen in Figure 5 are not present in Figure 12.
The bootstrap-estimated 95%-confidence intervals were
also smaller when MLO was not applied. Still, BFMC’s
confidence intervals were larger than MOCABA’s, indi-
cating a less converged result.
This difference between BFMC’s posterior correlations

with and without MLO requires examining the weight
distributions of the two data sets. Figure 13 gives the
CDFs of the weight distributions for the two BFMC exe-
cutions. Where previously only ∼1% of the weights from
BFMC with MLO were significantly greater than 0, when
MLO was not applied ∼10% of the weights were signifi-
cantly greater than 0. The different weight distributions
are linked to how Mextra affected BFMC. MLO added
extra uncertainties that made all χ2

i smaller. With 10,000
random samples, the population mean of χ2

i per DoF cal-
culated without MLO, or with equation (8), was 1.1E5.
With MLO, or using equation (17), it was 4.8E3.
First, we see why the weight definition of equation (9)

did not work for this data set: both with and without
MLO, there was no spread of the weights leading to weight
degeneracy, i.e. all weights were zero valued. Secondly,
we observed that MLO lowered the χ2

i values and subse-
quently decreased the spread of the weights, which then
led to a greater degree of weight degeneracy (as evidenced
by the CDFs). Simply put, BFMC’s weight definition,
where each χ2

i is normalized by χ2
min, changed the weight

distribution. The minimum χ2 per DoF without MLO,

or with equation (8), was 2.6E3. With MLO, or Equa-
tion (17), it was 1.4E1. Without using MLO, χ2

min was
bigger and, therefore, the normalization term was bigger.
This shifted all the weights in the distributions to big-
ger values when χ2

i /χ
2
min was then multiplied by -1 and

put in an exponential. By consequence, more weights had
higher values, leading to a more highly converged pos-
terior weighted average. It is important to mention that
weight degeneracy and lack of convergence are first and
foremost features of the sampling procedure and not of
the underlying statistical model or of whether the physics
model is deficient or not.

5.3.2 Posterior FYs

Figure 14 examines the relative differences between the
prior and posterior mean FYs of Pu-239 when MLO was
and was not applied. The added MLO uncertainty is
shown in red on the figures. The size of the red dots is
proportional to the skewness of the calculated FP concen-
tration corresponding to that mass number. First consider
the BFMC FYs where are two regions where the posterior
with and without MLO disagreed significantly: at 150 <
A < 160 (and this region’s opposite side of FY distribu-
tion at 80 < A < 90), and at 100 < A < 140. The majority
of the experimental data was for A between 140 and 160,
i.e. the isotopes of Gd, Eu, Sm, and Nd. When MLO was
applied, many of these data had large increases in uncer-
tainty, up to standard deviations of 20%. With increased
uncertainty, they influenced less the adjustment. This is
evidenced by the relative differences in Figure 14 at 150 <
A < 160 being smaller (in an absolute sense) when MLO
was used.
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Fig. 15. Posterior biases and uncertainties of the FP concentrations obtained when MLO was and was not applied.

MOCABA’s FYs had much larger disagreements when
they were calculated with and without MLO. The dis-
agreements are particularly large at A = 80–90, 110–130,
and 150–160. In these regions, the adjustments where
MLO was not applied were much larger. As most of the FY
data were affected, this result should be traceable to the
model parameters in GEF. The posterior model parame-
ters were quite different when MOCABA was used with
and without applying MLO. These differences were par-
ticularly prominent for P DZ Mean S1, P A Width S2,
HOMPOL, and POLARadd.
The same plots can be repeated for the relative dif-

ference between the standard deviations of the prior and
posterior GEF FYs, as shown in Figure 14. Beginning
with BFMC, the posterior standard deviations tended to
be smaller when MLO was applied. When χ2 is larger,
BFMC gives posterior uncertainties closer to the prior.
When MLO lowered χ2, it allowed for larger reductions
in uncertainty. BFMC showed previously an increase in
uncertainty at 110 < A < 130 when MLO was used. This
increase was hypothesized to be caused by increases in
the uncertainty of P Shell S4 and by large positive corre-
lations between P Shell S3 and other parameters. When
MLO was applied, there was no increase in the standard
deviation of P Shell S4, where previously it increased from
a prior of 0.05 MeV to a posterior of 0.070 MeV. Addition-
ally, the posterior correlation matrices given in Figure 12
showed that the correlations were weaker when MLO was
not used, due to better convergence, which led to the
decreased uncertainty. Again, the reduction in uncertainty
was largest in the densest areas of PIE data.
Oppositely to BFMC, applying MOCABA with MLO

helped to produce smaller standard deviations, relative to
the prior, than not applying it. At A > 150 and between
115 and 120, there was an increase in uncertainty.
In general, these results demonstrate the effect that
increasing and decreasing the importance of experimental
data points, through adding uncertainties with MLO,

can have on the posterior FYs. Interestingly, we did not
link these increases in uncertainty to any changes in
the standard deviations of the model parameters. We
hypothesize that it was caused by doing the Bayesian
inference stage and uncertainty propagation with two
different models: a multivariate normal distribution and
the exact physics model (GEF), respectively. Because
we constructed the prior as a covariance matrix of a
sample of model calculations, used this matrix to update
the parameters, and finally sampled from the obtained
posterior parameter covariance matrix to obtain the
posterior uncertainties for the FYs, non-linearities could
have produced larger posterior than prior uncertainties.
MOCABA was effected to a larger extent than BFMC

by the application of MLO. This is linked to two charac-
teristics of the data set: the large degree of inconsistency
and the skewness of the FP concentrations. MOCABA
will adjust σ no matter the degree of consistency of
the integral data. Large inconsistencies (i.e. large χ2)
cause large adjustments of σ to fit C and E, even if the
differences between the two are not caused by input uncer-
tainty but by the model inaccuracies. When MLO was not
applied, MOCABA created large adjustments of the GEF
parameters that were not based on physics, in effect over-
fitting the model parameters to E. Meanwhile BFMC, in
contrast, has an auto-correction mechanism through the
normalization by the minimum χ2 where large inconsis-
tencies dampen the size of the adjustment. Because of
this, MLO had less of an effect on BFMC because, in a
sense, the inconsistency was twice by MLO and by the
χ2 normalization.
Concurrently, there was the effect of the skewness

on MOCABA’s Gaussian assumption where, for non-
Gaussian C, MOCABA is a biased estimate of the
posterior distribution and the bias of the posterior param-
eter expectations was additionally increased. When MLO
was applied, it added uncertainties to many of data with
large skewness, like Gd-160, and changed the importance
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Table 6. Analysis of bias and uncertainty of posterior
calculated FP concentrations.

Avg. Abs. Avg. Rel.
Bias (%) Std. (%)

With No With No
MLO MLO MLO MLO

U1
Prior 26 21
BFMC 15 17 14 15
MOCABA 14 56 14 15

U2
Prior 19 19
BFMC 8.7 8.6 13 14
MOCABA 7.0 19 11 11

M1
Prior 23 21
BFMC 14 14 15 15
MOCABA 12 28 12 13

of these data in the adjustment. By decreasing the impor-
tance of these data with large skewness, MLO limited the
bias that MOCABA’s Gaussian assumption introduced.
Meanwhile, BFMC can account for the non-Gaussianity
and the altered importance of the highly skewed data did
not matter.
With this data set, it is hard to separate the over-

lapping effects of the inconsistency and non-Gaussianity.
Both should affect MOCABA, but to an unknown degree.
Future studies should be constructed that can separate the
two effects. A highly inconsistent and Gaussian data set
would determine if it was MLO that caused the observed
behavior. Another data set that is non-Gaussian but
consistent would determine if it was the skewness that
caused the observed behavior.

5.3.3 Posterior FP concentrations

The FYs from when MLO was not applied were also used
in CASMO-5M. Figure 15 compares their posterior biases
and uncertainties. Section 5.3.2 showed few significant dif-
ferences between the BFMC posterior FYs when MLO
was or was not applied. The only significant differences
were around A ≈ 115 and A ≈ 125, and at A > 150,
which are reflected in the posterior biases. Two isotopes
are determined by FYs at A ≈ 115 and A ≈ 125: Sb-
125 and Ag-109. When MLO was applied with BFMC,
the biases improved from 24% to 7.3% for Sb-125, and
from 36% to 30% for Ag-109. In contrast without applying
MLO, the biases worsened to 34% and 50% for Sb-125 and
Ag-109, respectively. Figure 15 demonstrates that MLO
also helped to create smaller biases for the Gd and Eu
isotopes. This result is also shown in the posterior FYs,
where at A > 150 they had more significant differences.
Section 5.3.2 also showed that there were large differences
between the posterior MOCABA FY data when MLO
was and was not applied. These differences are reflected
Figure 15 as well. The posterior biases of Sm, Nd, and Cs
isotopes were particularly affected by these differences in
FYs.
In Table 6, the posterior biases and uncertainties are

summarized for all FP concentrations, and for the fuel
samples U1, U2, and M1. Again, the CASMO-5M models

of U2 and M1 were re-run with the posterior FYs to test
the performance and degree of over-fitting of the posteri-
ors. The absolute bias of the FP concentrations, averaged
across all 33 data, and the relative standard deviation
of the calculated values, also averaged, are presented.
Beginning with fuel sample U1, we see that posterior
biases of BFMC were only slightly effected by applying
MLO. When MLO was applied, the posterior bias was 2%
smaller. This highlights an advantage of applying MLO
with BFMC: it counteracts BFMC’s push back towards
the prior with inconsistent data sets, allowing for better
improvement in the bias and a larger reduction in the
uncertainty. The posterior biases from MOCABA, how-
ever, were extremely effected. Without applying MLO,
the bias worsened to 56%, while with MLO it improved
to 14%.
Fuel samples U2 and M2 also showed similar behav-

ior: small differences between the BFMC average absolute
biases, and much larger biases when MOCABA was
used without MLO. M1 also had a posterior bias when
MOCABA was used without MLO that was larger than
the prior. In general, the results reflect what was observed
for the FY data: MLO significantly affected the MOCABA
adjustments, and marginally improved the BFMC adjust-
ments. Concerning the average relative standard deviation
of the posterior calculated values, for every fuel sam-
ple and for both BFMC and MOCABA, applying MLO
produced smaller uncertainties.

6 Conclusions

This study presented a methodology to adjust the param-
eters of GEF with post-irradiation examination data.
The goal was to improve the bias and uncertainty of
the calculated concentration of fission products in spent
fuel. The integral parameters were nuclide concentrations
that were part of the LWR-Proteus Phase II experiment.
Two methods were applied to perform DA: MOCABA
and BFMC. The posterior model parameters, and sub-
sequently FYs and calculations, showed good agreement
between MOCABA and BFMC, despite the non-normality
of the calculated responses. The posterior FYs agreed
more strongly with the FYs from JEFF3.3 than the prior.
The posterior FYs also created lower biases and uncer-
tainties in fission product concentrations. For the training
data, the average absolute bias of prior was 26%. The
posterior biases with MOCABA and BFMC were 14%
and 15%, respectively. The uncertainty of the calcula-
tions dropped from 20% for the prior, to 14% with both
MOCABA and BFMC. When the posterior FYs were used
with fuel samples that were not part of the training data,
they also improved the biases and reduced uncertainties.
This showed that the fission yields were not over-fit to the
training data.
When MLO was not used, the BFMC posteriors exhib-

ited slight differences. MOCABA, in contrast, showed very
significant differences. The trends of the adjusted FYs
were significantly changed, which had a deleterious effect
on the posterior biases of the calculated fission product
concentrations. For the training data, the average absolute
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bias deteriorated from a prior of 26% to a posterior of 56%.
This result was a combination of the increased degree of
inconsistency of the integral data without using MLO, and
from the increased importance of the skewness of the cal-
culated values. These problems did not occur with BFMC
because it accounts for the inconsistency with its weight
normalization and because it can handle non-normality.
Applying MLO did worsen the weight distribution, and
therefore the statistical accuracy, of the BFMC posteri-
ors. However, it also helped to create better biases and
lower uncertainties.
Future work should focus on expanding the set of exper-

imental data to be used in the adjustment. The strongest
adjustments in the FYs were in areas with the highest
density of experimental data. The Pu-239 and Pu-241 FYs
were predominantly improved, through comparison with
JEFF3.3, while U-235 was marginally adjusted. With a
different experimental data set, the FYs of U-235 could be
more precisely targeted. The SFCOMPO database [55,56]
could be used to find more post-irradiation examination
data. The methods presented in this work could also be
used to provide high quality adjustments to the FY data.
For this purpose, it would be better to not use PIE data
but rather “clean” experiments to avoid adjustments that
come from biases that are not made by nuclear data. For
example, fission-pulse decay heat experiments could be
used, which are for one fissile isotope with no impact from
other sources (cross sections, irradiation history, etc).
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