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Abstract. In this paper, we present three Monte Carlo methods to include integral benchmark information
into the nuclear data evaluation procedure: BMC, BFMC and Mocaba. They allow to provide posterior
nuclear data and their covariance information in a Bayesian sense. Different examples will be presented,
based on 14 integral quantities with fast neutron spectra (keff and spectral indices). Updated nuclear data
for 235U, 238U and 239Pu are considered and the posterior nuclear data are tested with MCNP simulations.
One of the noticeable outcomes is the reduction of uncertainties for integral quantities, obtained from
the reduction of the nuclear data uncertainties and from the rise of correlations between cross sections
of different isotopes. Finally, the posterior nuclear data are tested on an independent set of benchmarks,
showing the limit of the adjustment methods and the necessity for selecting well representative systems.

1 Introduction

The improvement of nuclear data (observables such as cross sections, angular and energy spectra) is a continuous activ-
ity which is ongoing for many decades. It is justified by the need to expand the theoretical knowledge and understanding
of the various nuclear reaction processes over the years, and also by the needs from the applied community for improved
predictions, reduced costs and enhanced safety. The present paper treats of practical solutions to answer these user
needs, by taking into account integral information with Monte Carlo methods in the nuclear data evaluation process.

In spite of the many theoretical advances, the role played by the experimental observations (E) and their un-
certainties (∆E) is still essential in the theoretical predictions of nuclear cross sections. It is guiding the efforts for
improving models and calculations (C), but is also used as a calibration tool to adjust model parameters, with the
goal to obtain C −E close to 0 within the experimental uncertainties ∆E for the largest number of cases. As a second
quantity of interest, the calculated uncertainty ∆C helps to understand the significance of C − E values in context
of the model uncertainties (by extension, the “uncertainty” quantity can be replaced by the “covariance” quantity).

If ∆C can be assessed, then C − E values being within 0 ±
√

∆E2 + ∆C2 (if ∆C and ∆E are uncorrelated) can be
seen as a good agreement between C and E. In the following, we will restrict ourselves to ∆C coming from nuclear
data as the other sources of uncertainties are outside the scope of this study. In this context, recommended nuclear
data are produced using physics-based descriptions in combination with mathematical-based fitting procedures; this
is a simplified but illustrative view on the nuclear data evaluation work, and the methods presented in the following
are defined with the goal to reduce C − E values, taking into account the experimental and calculated uncertainties.

One of the most convenient source of experimental data for evaluators is the EXFOR database [1], being a collection
of E, ∆E, covariance information and related descriptions in various publications. In EXFOR, the vast majority of
the E refers to differential measurements, often performed for a single isotope or element, and being independent of
the facility spectrum. Such quantities are therefore easily comparable with C coming from a model calculation. And
traditionally, evaluators preferred to base their work on clean experiments such as from EXFOR, the result being a
so-called general-purpose nuclear data library.

Another important source of experimental knowledge lies in integral information, such as integral benchmarks, as
included in the ICSBEP collection [2]. Conceptually, there is little difference in considering differential or integral data
to obtain useful information during the evaluation process, but one has to pay attention to possible compensation
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with integral data, due to the impact of other isotopes included in the model. Additionally, such benchmark systems
allow to test the nuclear data in a certain energy range, with specific geometries, therefore adding some difficulties in
using them in the evaluation process. For these reasons, the integral data have not been mathematically included by
evaluators in their procedure, but it is a fact that such data have indirectly been used to perform fine adjustment of
specific cross sections to improve the global C − E of an entire library.

With these quantities in hand, it is possible to adjust specific cross sections with mathematical procedures, the
results being a posterior set of nuclear data, adjusted for specific applications (i.e. taking into account specific integral
information). Historically, this adjustment step was not performed by nuclear data evaluators, but by specific users who
wanted to derive application libraries based on a general-purpose library. Many methods were developed to perform
these adjustments, for instance based on deterministic approaches (see refs. [3,4] for an extensive description of the
various methods), and more recently with Monte Carlo based sensitivity functions [5] and Bayesian methods [6]. Such
libraries present some undeniable advantages: better C −E for a specific range of application and smaller ∆C (see for
instance ref. [7,8]). The drawback is nevertheless noticeable: it is to be used for certain applications only (see ref. [9]
for examples on “stress tests” used to test adjusted nuclear data).

Since a few years, two circumstances are pushing to change this accepted evaluation methodology by merging parts
of the adjustment methodology into the evaluation process. The first one comes from the user community (criticality-
safety, spent fuel management, core simulation) asking for smaller (and justified) uncertainties on calculations for
applied quantities. Indeed, by using the covariance information from general-purpose libraries (JEFF, ENDF/B or
JENDL), the calculated uncertainties on specific parameters for reactor or fuel are relatively large, and can imply
the use of penalty factors. Such uncertainties are now challenged as they do not always correspond to the expert
judgment from these large-scale facilities. The second one comes from the evaluator community itself, where it has
been recognized that the calculated uncertainties (based on general-purpose libraries) for simple criticality-benchmarks
are also too large compared to the experimental uncertainties. Taking these two aspects into consideration, there is
nowadays a tendency to shift some of the adjustment work into the evaluation procedure (see, e.g., ref. [10]). This
would help the user community as they could continue using new library versions such as JEFF, but leading to smaller
∆C and smaller biases. It would also make clearer at the evaluation level which integral benchmarks are in fact
considered and how.

It is in this context that this paper presents Monte Carlo solutions to include integral values into the evaluation
procedure. Whereas there are a few existing deterministic methods to obtain such adjustments, Monte Carlo methods
are becoming more attractive as computer power is more available than before, and as less assumptions are necessary
compared to specific deterministic methods. In the following, we will first present the different necessary quantities
(sect. 2), followed by the three Monte Carlo methods (sects. 3 to 5). Contrary to ref. [5], the presented methods do
not use sensitivity vectors. Specific sections will present the practical solution of making an evaluation from these
posterior nuclear data (sect. 6) and the issues of convergence linked to Monte Carlo methods (sect. 7). Finally, results
will be presented considering 14 integral quantities: for posterior C − E, posterior nuclear data and covariance, and
examples of the predictive power (or stress tests) for these updated quantities will also be presented.

2 General description

This work is based on Monte Carlo sampling and a repetition of the same integral (benchmark) calculations with
randomly chosen inputs (specific nuclear data), thus avoiding the explicit use of sensitivity vectors (or coefficients).
These inputs are the nuclear data evaluations for three isotopes: 238U, 235U and 239Pu. As previously presented in many
publications, a random nuclear data file, for instance for 238U, is produced by randomly choosing the model parameters
(such as in TALYS) and the resonance parameters, according to specific probability density functions (pdf). In this
work, all parameters are independently sampled, following normal distributions with specific standard deviations. Such
standard deviations are selected to globally reproduce experimental differential data, such as in EXFOR. Additionally,
the resonance range is not modified as this study concentrates on systems driven by fast neutrons only. The next
sections will present some details on the considered nuclear data and the integral benchmarks. For readers more
interested on the generation of the random nuclear data, we refer to the extensive description from ref. [11].

2.1 Nuclear data

In the following we will consider a set of random nuclear data evaluations for each isotope, in practice represented by
ENDF-6 files [12] which contain all cross sections and spectra. For simplicity, such random nuclear data evaluations
will be called 235Ui for the i-th random realization of the 235U nuclear data, and similar notation will be used for
the other isotopes such as 238U or 239Pu. 235Ui is a vector (or a set of long tables in an ENDF-6 file) containing
all the important nuclear data represented with the symbol σ: cross sections (fission, scattering, etc.), spectra (such
as prompt fission neutron spectra), number of fission neutrons (prompt ν), but also angular distributions and other.
All these quantities are represented as a function of the incident (and if necessary outgoing) neutron energy Einc.



Eur. Phys. J. Plus (2018) 133: 537 Page 3 of 23

In general, Einc varies from 0 to 20MeV. Such random nuclear data set is expressed as follows:

235Ui =

⎡

⎢

⎢

⎢

⎢

⎣

σ1(Einc)i

σ2(Einc)i

...

σn(Einc)i

⎤

⎥

⎥

⎥

⎥

⎦

. (1)

The number of random files i will vary from 1 to I, I being 10 000 in this work. In the following, the term (Einc) is
not repeated and σ1(Einc)i will be simply noted σ1i. n is a large number referring to energy and reaction dependent
nuclear data: for elastic, fission, inelastic cross sections and so on.

As for any distribution of observables, different moments of the distribution of the I quantities can be obtained,
such as the average σ1, the variance var(σ1) or the covariance term between two nuclear data cov(σ1, σ2):

σ1 =
1

I

I
∑

i

σ1i, (2)

var (σ1) =
1

I

I
∑

i

(σ1i − σ1)2, (3)

cov (σ1, σ2) =
1

I

I
∑

i

(σ1i − σ1)(σ2i − σ2). (4)

It is understood that all these quantities can be defined for specific neutron energies Einc. A useful quantity in the
following is the covariance matrix for the nuclear data, called Mσ, simply being

Mσ =

⎡

⎢

⎢

⎣

cov (σ1, σ1) cov (σ1, σ2) . . .

...
. . .

cov (σn, σ1) cov (σn, σn)

⎤

⎥

⎥

⎦

, (5)

where cov(σ1, σ2) is presented in eq. (4).
In the present work, the nuclear data are considered for a limited number of energies, using 68 groups from 4 keV

to 20MeV. These groups are a subset of the 187 groups as defined in ref. [13]. Such energy range is adequate given the
choice of benchmarks (see next section). Additionally, a limited number of reactions is considered for practical reasons:
(n, el), (n, γ), (n, f), (n, inl) (from the first inelastic level to the 20-th, including the continuum), νprompt (later called
ν) and five fission neutron spectra for the incident neutron energies from 200 keV to 3MeV. It represents a total of 30
reaction channels, leading to a vector of n = 30 × 68 = 2040 numbers for a single isotope.

For the benchmarking presented in sect. 2.2, the 3 main isotopes 238U, 235U and 239Pu are represented with
I = 10 000 random files each. This number is chosen so that the different calculated Monte Carlo moments are
converged in a satisfactory manner, see for example ref. [14]. There is therefore I3 possible combinations of random
vectors (238Ui,

235Ui′ ,
239Pui′′). As this number is relatively high given the computational resources, we will consider

only I possibilities where i = i′ = i′′. As these isotopic random nuclear data evaluations were independently produced
using different random numbers (in fact different seeds for the random number generators), this choice is an arbitrary
but representative subset of the possibilities.

For a specific value of i, the nuclear data will be represented by the vector NDi, such as

NDi =

⎡

⎢

⎣

235Ui

238Ui

239Pui

⎤

⎥

⎦
. (6)

It contains all the necessary random nuclear data (cross sections and others) for each of the three isotopes, and is
therefore of large dimension: for the three isotopes together, the number of elements of NDi is 3 × 2040 = 6120. (in
practice, such data for each isotope can be formatted into a so-called ACE file, being of tens of Mb each). The set of
I = 10 000 random nuclear data is represented by the vector Σ:

Σ =

⎡

⎢

⎢

⎣

ND1

...

NDI

⎤

⎥

⎥

⎦

. (7)

In the present case, the dimension of the vector Σ is N = 6120 × 10 000 = 6.12 × 107.
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As presented later, it is useful to define the nuclear data average ND, being simply the arithmetic average of the
I random cases:

ND =

⎡

⎢

⎢

⎣

235U

238U

239Pu

⎤

⎥

⎥

⎦

. (8)

Each element represented under 235U is defined by eq. (2). The dimension of ND is the same as NDi: 6120. In the
following, the vector of dimension 1 × n will be presented with bold letters, such as ND, whereas matrices of larger
dimensions m × n will be presented in the “AMS math symbol font B”, such as M. Also, the subscripts (e.g., i) will
refer to the i-th random file, and the superscripts (e.g., (p)) will refer to the experimental case.

2.2 Benchmarking

In the following equations, i will also refer to a random MCNP6 calculation for a set of different benchmarks, using
the random nuclear data NDi. Such calculation i is based on a particular set of random ACE files, one for each of
the 3 isotopes 235U, 238U and 239Pu. Thus, i will correspond to the three random files and the results of the MCNP6
calculation for each of the P integral quantities. Such calculation process can be represented by the following scheme:

NDi =

⎡

⎢

⎣

235Ui

238Ui

239Pui

⎤

⎥

⎦

MCNP6−−−−−→

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

q
(1)
calc,i

q
(2)
calc,i

...

q
(p)
calc,i

...

q
(P )
calc,i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= Qcalc,i. (9)

A vector NDi can be used to calculate a number of benchmarks with different quantities such as keff or spectral
indices (the index “calc” denotes a calculated quantity, contrary to “exp” which means an experimental quantity).
These calculated quantities are of a total of P for a given i, and p is their index (from 1 to P). In a more general
notation, eq. (9) is equivalent to

Qcalc,i = f (NDi) , (10)

where f is a function representing the integral benchmark calculation using the nuclear data set NDi. In this repre-
sentation Qcalc,i is a vector of P values and each value is obtained from the run i with the nuclear data NDi. One
can notice in general that P ≪ n, implying that even if not all elements of NDi are relevant for the calculations of
Qcalc,i, a large number of random cases will be necessary to obtain meaningful posterior distributions.

In the following, it is also useful to define the vector Qcalc, still containing P values, but this time each value being
the average of the I calculations for each p integral quantity.

In a more general form, we can define the vector Qcalc containing all the values of Qcalc,i for i from 1 to I. In this
case, eq. (10) is equivalent to

Qcalc = f (Σ) . (11)

In the present work, f is a MCNP6 calculation, and P = 14 integral quantities, coming from 12 specific benchmarks,
as listed in table 1. Three quantities are used: keff and two spectral indices F28/F25 and F49/F25, corresponding
to the ratios of the fission rates per atom for 238U and 239Pu over 235U, respectively. Each benchmark name follows
the usual nomenclature of the ICSBEP database: 3 letters followed by numbers. All benchmarks are metallic (given
by the second letter) and are sensitive to the fast neutron range (given by the third letter). The benchmark names
starting with a “p” refer to plutonium systems, the ones starting with a “h” refers to 235U benchmarks, “i” means a
mixture of 235U and 238U, and “m” means a mixture of 235U, 238U and 239Pu isotopes. The experimental values are
later represented by the vector Qexp of dimension P = 14 and the experimental uncertainties are represented by a
similar vector ∆Qexp.

A quantity used in the following is the benchmark experimental covariance matrix, called Me. It is a square matrix,
of dimension P × P, filled with element

ρp,j × ∆q(p)
exp∆q(j)

exp.
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Table 1. List of the considered experimental values (14) from 12 criticality benchmarks. The measured values are the ones
reported in ref. [2]. “name” is the benchmark name.

p Name Surname Quantity Measurement

1 imf1-1 Jemima keff 0.99880 ± 90 pcm

2 imf7 Bigten keff 1.00450 ± 70 pcm

3 mmf1 keff 1.00000 ± 160 pcm

4 pmf2 Jezebel-40 keff 1.00000 ± 200 pcm

5 pmf1 Jezebel keff 1.00000 ± 200 pcm

6 pmf1 F28/F25 0.2133 ± 0.0023

7 mmf3 keff 0.99930 ± 160 pcm

8 hmf1 F49/F25 1.4152 ± 0.0140

9 pmf22 keff 1.00000 ± 210 pcm

10 hmf28 Flattop-25 keff 1.00000 ± 300 pcm

11 imf2 Pajarito keff 1.00000 ± 300 pcm

12 pmf6 Flattop-Pu keff 1.00000 ± 300 pcm

13 pmf6 F28/F25 0.1799 ± 0.0020

14 pmf8 Thor keff 1.00000 ± 60 pcm

There are different ways of evaluating the matrix Me. The uncertainties ∆q
(p)
exp directly come from the ICSBEP

evaluation database (or in a general manner from any integral database, such as IRPhe, SINBAD [15], or differential
as EXFOR), whereas there is no consensus on the correlation coefficients ρp,j (see refs. [3,16] for details). These
correlation coefficients are not provided in ref. [2] and international efforts are ongoing to establish such values for the
most important benchmarks [17–19]. In this work, we consider the 14 experimental values uncorrelated. Considering
only two measured quantities, Me is simply:

Me =

[

(∆q
(1)
exp)2 0

0 (∆q
(2)
exp)2

]

, (12)

with the ∆q
(p)
exp values given in table 1. Such approximation has no consequence on the goal of this paper which is the

demonstration of the applicability of the Monte Carlo adjustment methods.
Finally, it is also possible to define the Mc matrix, being the prior covariance matrix for the calculated integral

quantities. Such matrix can easily be defined as

Mc =

⎡

⎢

⎢

⎣

covc 1,1 covc 1,2 . . .

...
. . .

covc P,1 covc P,P

⎤

⎥

⎥

⎦

, (13)

where

q
(p)
calc =

1

I

I
∑

i

q
(p)
calc,i, (14)

covc 1,2 =
1

I

I
∑

i

(

q
(1)
calc,i − q

(1)
calc

)(

q
(2)
calc,i − q

(2)
calc

)

. (15)

The correlation terms between two benchmarks can be defined as follows: ρ1,2 =
covc 1,2√

covc 1,1 × covc 2,2
, and are presented in

fig. 1 in the case of I = 10 000 random files for the three considered isotopes. This correlation matrix is used later for the
BMC, BFMC and Mocaba methods and the calculated standard deviations are given by the diagonal elements of the
equivalent covariance matrix. Due to the selection of benchmarks, this matrix can be subdivided in three groups: the
plutonium benchmarks, the 235U highly enriched benchmarks, and in between. In general, the correlation factors are
relatively high, as between the keff for the plutonium benchmarks. The spectral indices F28/F25 are weakly correlated
with the keff and strongly correlated between themselves. Also, the F49/F25 for the hmf1 benchmark is strongly
correlated with all the plutonium keff . The imf benchmarks, which do not contain 239Pu, are not correlated with the
pmf keff , but present some non-negligible correlations with the pmf spectral indices. These correlations, coming from
the nuclear data only, do not include the covariance information from other sources.



Page 6 of 23 Eur. Phys. J. Plus (2018) 133: 537

Fig. 1. Prior correlation matrix Mc for the 14 benchmark quantities. Such matrix is produced using I random files for 235U,
238U and 239Pu. F5, F8 and F9 means F25, F28 and F29, respectively.

3 BMC/BFMC equations

The BMC and BFMC methods were already presented in a few papers [20,14,21–23] and only the necessary equations
are repeated here. One can notice that the BMC method is very close to the UMC-B description as presented in
refs. [24,25].

3.1 χ2 definition

χ2 is a very convenient integral quantity to compare performances of calculations with experimental values. As pre-
sented in ref. [26], a general description of χ2 for the i realization of the nuclear data is

χ2
i = [Qexp − Qcalc,i]

T
M−1

e [Qexp − Qcalc,i] , (16)

where the superscript T means the transpose of the vector or matrix and the superscript −1 means its inverse. The
definitions of the different vectors and matrices are given in the previous sections. As mentioned earlier, the prior
correlation terms between the benchmarks are not well known and they are assumed here to be all zero. In this case,
the matrix Me is reduced to a simple expression (similar to eq. (12)) and when divided by the degree of freedom P ,
eq. (16) is equivalent to

χ2
i /P =

1

P

P
∑

p

(

q
(p)
calc,i − q

(p)
exp

∆q
(p)
exp

)2

. (17)

The value calculated with eq. (17) directly indicates how far are the calculations i from the measurements in terms
of average standard deviation. It is worth noting that a value close to 1 indicates a “sufficient” agreement; there is no
need from a statistical point of view to obtain χ2

i /P = 0, which could indicate an “over calibration” (tuning of nuclear
data) to the P benchmark values.

3.2 Weight definition

Based on the above definition of χ2
i for a specific realization i of the vector Qcalc,i (random nuclear data), the BMC

and BFMC methods are using different definitions of weights, called wi. Such weights reflect the agreement between
the calculated and measured values: if the agreement of the random case i with the P experimental values is better
than for the random case i′, the weight attached to the random vector Qcalc,i will be higher than the one for Qcalc,i′ .
The expression of the weight for BMC is

wi = exp

(

−χ2
i

2

)

. (18)
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Such weight is directly proportional to the likelihood function. It can be observed that the values of wi will change
if eq. (16) or eq. (17) is considered, but the method stays the same. The calculation of the qcalc,i values is the most
time-consuming process in this method, but once it is done, wi can be easily (re)calculated with different definitions.
In the case of the BFMC method, the definition of the weights wi is different. Because of approximations in the
reaction models, of simplifications and assumptions in the calculations of the χ2

i values, eq. (18) can lead in practice to
extremely small weights. The alternative proposed by the BFMC method is to change the value in the exponential so
that the spread of the χ2

i does not lead to extreme variations of weights. This is achieved by renormalizing χ2
i values,

for instance, such as

wi = exp

(

− χ2
i

χ2
min

)

, (19)

where χ2
min is the minimum χ2 value obtained within the I random cases. One can notice that in ref. [27], an additional

square is used. This is again to empirically avoid a large dispersion of weights. From a practical point of view, such
normalizations and change of weight definition can be performed in an ad hoc way and can be justified by different
model defects in the calculation of χ2

i . The definition of eq. (19) does not correspond to a Bayesian one anymore, but
allows to obtain weights which are not too small in the case of relatively large spread of weights (see ref. [27] for a
comparison of the different evaluation methods based on Monte Carlo sampling). The weight definition is the only
difference between BMC and BFMC. As presented in the following, it will have a strong impact on the results, mainly
because many weights wi are extremely small in the case of BMC.

3.3 Updating the prior

As explained, a weight wi is assigned to a specific nuclear data such as σ1i. Therefore, the posterior nuclear data in
terms of average, variance and covariance are defined in a very similar way compared to eqs. (2) to (4):

σ1
′

=
1

ω

I
∑

i

σ1i × wi, (20)

var (σ1)
′
=

1

ω

I
∑

i

(

(

σ1i − σ1
′

)2

× wi

)

, (21)

cov (σ1, σ2)
′
=

1

ω

I
∑

i

(

σ1i − σ1
′

)(

σ2i − σ2
′

)

× wi, (22)

with

ω =

I
∑

i

wi (23)

(note that the ′ is used in these expressions to represent posterior values). Similar to the definition of eq. (8), eq. (20)

allows to define an updated average ND
′

, being a vector of different σi
′ with updated covariance vectors. Equation (22)

is the posterior of nuclear data covariance, defined in a matrix form as Mσ
′.

The BMC and BFMC methods then offer posterior values for the three mentioned quantities, taking into account
P integral data. As for any Monte Carlo process, one has to assure that these quantities are converged in a statistical
sense. For an unweighted distribution of observables, the rate of convergence follows a 1/

√
i function, whereas different

options exist for weighted distributions [28]1. Specific convergence rates will be presented in sect. 7.
In a similar way, the calculated benchmark values can be updated using a weighted average:

q
(p)
calc

′

=
1

ω

I
∑

i

q
(p)
calc,i × wi. (24)

Equation (24) can be applied for each of the P benchmarks, leading to P updated averaged benchmark values Qcalc

′

,

corresponding to the updated average nuclear data Σ
′

. As for eq. (11), we can express the update procedure with the
following equation:

Qcalc

′

= f
(

Σ
′
)

, (25)

where the updated values correspond to averages (for both nuclear data and integral values). In a general manner,
the results of eqs. (11) and (25) are different as f is not a linear function (f represents the processes modeled in the

1 A potential deviation from 1/
√

i can happen using the normalizing factor ω for low numbers of I.
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Table 2. List of considered benchmarks with the calculated prior C − E integral values. Values in red and orange are outside
2 and 1 experimental standard deviations, respectively. Values in black are within one standard deviation. All values are given
in terms of values ×105.

∆E C − E ±∆C C − E

average file 0

1 imf1 keff 90 −91 ± 910 +363

2 imf7 keff 70 −292 ± 850 −153

3 mmf1 keff 160 −132 ± 670 +3

4 pmf2 keff 200 +329 ± 670 +440

5 pmf1 keff 200 +77 ± 780 +162

6 pmf1 F28/F25 230 −394 ± 540 −230

7 mmf3 keff 160 +117 ± 640 +280

8 hmf1 F49/F25 1400 −2680 ± 2530 −2730

9 pmf22 keff 210 −85 ± 796 +13

10 hmf28 keff 300 +309 ± 932 +686

11 imf2 keff 300 −238 ± 835 +8

12 pmf6 keff 300 +478 ± 777 +559

13 pmf6 F28/F25 200 −301 ± 424 −40

14 pmf8 keff 60 −192 ± 734 −126
P ||/P 414 ± 480 414
P

/P −54 ± 480 −55

χ2/P 3.3± xxx 3.4

neutronic simulations and nuclear data models). One can notice that there is no need to define a covariance matrix
between the calculated quantities and the nuclear data to obtain posterior cross sections. Such matrix is implicit in
the use of the weights wi. As presented in the next section, the Mocaba approach is explicitly using this matrix.

In order to compare the posterior and prior results, table 2 presents the calculated prior benchmark values, both
from the average of the I random runs, and for the nominal set of ENDF files, called “file 0”. The “file 0” is obtained
from the set of nominal model parameters, without random variations. It corresponds to the best-estimate calculation
for the nuclear data (cross sections and other) as one can find in a nuclear data library. For later comparison, the
simplified χ2 divided by the degree of freedom with the average biases (sum of the C − E or of the absolute values
of C − E,

∑

and
∑ ||, respectively) are also indicated. This table is pointing out the difference between the nominal

file (file 0) and the average of the I random files: showing that the calculated integral values are different for ND0

and ND. This table also indicates that almost all differences C − E can be covered by ∆C. It also does not mean
that an adjustment of nuclear data can simultaneously reduce all C − E to zero, but it indicates a possible degree
of improvement. One can see that only 5 calculated integral values are within one experimental standard deviation,
being 36% of all integral values.

As an additional indication of the deviation between calculated and measured integral values, the average deviations
are also indicated with an uncertainty of 480 pcm. It is obtained using the calculated uncertainties ∆C on each integral
values, and with the correlation matrix presented in fig. 1. Because of the non-negligible correlation terms in Mc, the
calculated global uncertainty is smaller than the individual components.

4 Mocaba equations

The Mocaba equations presented in the following were already introduced in two papers, see refs. [29,30]. They are
summarized below, keeping the same notation as for the BMC/BFMC equations.

4.1 Definitions

Four equations are necessary to define the posterior nuclear data and integral quantities and their covariance matrices.

Qcalc

′

= Qcalc + Mc(Mc + Me)
−1

(

Qexp − Qcalc

)

, (26)

Mc
′ = Mc − Mc(Mc + Me)

−1Mc, (27)

ND
′

= ND + Mσ,c(Mc + Me)
−1

(

Qexp − Qcalc

)

, (28)

Mσ
′ = Mσ − Mσ,c(Mc + Me)

−1Mσ,c
T. (29)
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As before, Qexp represents the experimental values from the selected benchmarks, and Qcalc is also a vector of 14

values, each of them being the average of the I = 10 000 random cases. Qcalc

′

represents the updated average values,
similar to eq. (25) in the BMC case. The Me matrix is the same as previously defined with non-zero diagonal elements
only (no uncertainties from the methods are included). In eq. (27), all the terms are similar to the BMC description
for Mc and Mc

′. Both eqs. (26) and (27) are enough to define the posterior distribution for the calculated integral
quantities. Their counterparts in the BMC/BFMC approach are the eqs. (20), (22) and (24).

The two following eqs. (28 and 29) define the posterior distributions for the nuclear data. An additional matrix
is necessary compared to BMC, corresponding to the covariance terms between the nuclear data and the calculated

quantities q
(p)
exp,i. Such matrix Mσ,c is a rectangular matrix of dimension 3n × P :

Mσ,c =

⎡

⎢

⎢

⎣

cov1,1 cov1,2 . . .

...
. . .

cov3n,1 cov3n,P

⎤

⎥

⎥

⎦

, (30)

where

cov1,2 =
1

I

I
∑

i

(

σ1i − σ1
)

(

q
(2)
calc,i − q

(2)
calc

)

, (31)

with σ1 and q
(2)
calc defined in eqs. (2) and (14), respectively. As before, ND is the prior average nuclear data and ND

′

is the posterior distribution for the nuclear data. Similar definitions hold for their covariance matrices Mσ and Mσ
′.

4.2 Similarity with GLLS

Such description of the Mocaba equations is very similar to the one of the Generalized Linear Least Squares as it
can be found for instance in refs. [3,31]. While keeping the same notation as previously, the GLLS equations can be
expressed as follows:

Qcalc,0
′ ≈ Qcalc,0 + S̃(ND′

0 − ND0), (32)

Mc
′ = SM′

σST , (33)

ND′

0 = ND0 + MσST (Mc + Me)
−1

(Qexp − Qcalc,0), (34)

Mσ
′ = Mσ − MσST (Mc + Me)

−1
SMσ, (35)

with S being the matrix of the sensitivity coefficients and S̃ the Jacobian matrix [31]. Different formulations can
be found in the literature, but it was demonstrated in ref. [29] that the GLLS equations can be derived from the
Mocaba equations under the approximation of linear relationship between the calculated integral values and the
nuclear data.

A point of importance for this work is that the GLLS method provides an update of the nominal nuclear data
(called here ND0), whereas the updated quantities in the Monte Carlo methods are the average nuclear data (ND).

5 TMC, single selection and combination

The TMC method was extensively presented in many publications, and the most relevant ones in the context of this
work are refs. [32,33]. It stands for “Total Monte Carlo” and is basically used to produce the random nuclear data
files. But it can also be used for simple data adjustment as presented here and it is therefore interesting in this study.
But if it can provide nuclear data with better C − E, it does not give access to updated covariance matrices.

– Simple selection based on these files [34]: once weights are assigned to all the random files, one can simply select
the random file with the highest weight. Such file can be considered as the new evaluation to be kept for a future
library; it is later called “best file”. This is justified since the random nuclear data files were created to cover
experimental data from the EXFOR database, there is therefore a high possibility that this best file (from the
point of view of integral data) is also in good agreement with differential data. Such an assumption needs to be
verified before the selected file is kept as the final evaluation. Additionally, its performance on integral benchmarks
not included in the calculation of the weights needs to be verified.
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– Linear combination. A slightly different approach allows to obtain extremely small C − E for the integral data
included in the process and is mentioned here as an interesting solution but with a poor predictive power. One
can select P random files and linearly combine their integral results to obtain C − E ≃ 0. Let X be a vector of P
unknowns xp (in the present case, 14) and Qcalc the integral results of a selection of P random files. The matrix

Qcalc has a P × P dimension with elements such as q
(p)
calc,i, i represents the file number (as a column index) and p

is the integral value (as a line index). In such case, there exists a vector X verifying the following equation:

Qcalc × X = Qexp. (36)

By inverting the matrix Qcalc, one can find the values xp leading to C − E = 0:

X = Q−1
calc × Qexp. (37)

There is a large possible choice of P random files and in the following, the first P files with the highest weights
will be selected. As long as the Qcalc can be inverted, there is always a solution. A drawback of this method is that
it can be applied for a limited number of integral observables only. The maximal number of linear independent
columns of Qcalc (its rank) is limited by the number of varied parameters in the nuclear data file. Therefore the
matrix Qcalc will become singular for increasing number of integral observables. Additionally, the resulting weighted
combination of the nuclear data files is not necessarily convex, therefore some weights can be negative. Finally
such a method will have a poor predictive power for integral values not included in the procedure. Results of these
selections will be presented in sect. 8.

6 Integration in a single ENDF file

As presented in eq. (20) for the BMC/BFMC methods and in eq. (28) for the Mocaba approach, the updated quantities
concern the full distribution of the I values for each benchmark. This is practical from the point of view of nuclear
data users seeking to reduce the calculational bias and the associated uncertainties by starting from a given nuclear
data library and by including additional information, such as the integral benchmarks.

In the case of the BMC/BFMC methods, the presented approach provides a (large) number of random files with
weights and a user would have to use the same random files with his/her own simulations and calculate weighted
averages. This is certainly not practical and a different solution is proposed in the following. An alternative solution
would be to use the random files having a weight higher than a certain value, so that the weighted average of the
calculated integral quantity is not significantly altered. Still, if the number of relevant random files would be reduced,
this remains a cumbersome solution.

From the perspective of nuclear data evaluation, such equations do not provide an adequate solution as the goal is
to update the nominal quantities in ND0 in order to provide users a unique updated library, consisting of one single
evaluated file for each isotope, containing new (posterior) cross sections and new covariance matrices.

An additional concern is that the nominal nuclear data might be different from the average of all the I random
values: ND0 �= ND. Indeed from the variation of the model parameters, there is no constraint to assure such equality
(see ref. [35,36] for specific examples). Therefore two practical solutions are explored:

A) update (multiplying) the nominal nuclear data file ND0 with the ratios defined by ND
′

/ND0, effectively replacing
the nominal values by the posterior averages;

B) update (multiplying) the nominal nuclear data file ND0 with the ratios defined by ND
′

/ND.

In the following, different results will be presented using both possibilities, referred to as update A and B. As the prior
nominal nuclear data can differ from the prior average of all the random files, these two solutions are not equivalent.
The first one is intuitive since it is simply a substitution of the original nuclear data by the ones providing on average
better performances with the selected benchmarks. But it neglects the fact that the update was performed considering
ND and not ND0. The second solution considers that the relative change between the prior and posterior averages is
the quantity to use in the update of the nominal nuclear data ND0. In the sect. 8, results from both possibilities will
be presented.

7 Convergence rates

As the BMC/BFMC and Mocaba methods are based on Monte Carlo sampling of a large number of inputs (as
presented, the dimension of the nuclear data vector σ is relatively large, higher than 10 millions), it is important that
the prior and posterior quantities are converged. The convergence criterion is here very pragmatic, being that the
quantities (prior and posterior nuclear data as well as integral quantities) as a function of the iteration number seem
stable “by eye”.
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Fig. 2. Prior (top) and posterior (bottom) keff Monte Carlo sampling of the probability density function in the case of the hmf1
benchmark, varying the 235U nuclear data only. The vertical line and band indicate the value of the experimental keff with its
uncertainty (1.0000 ± 200 pcm). The posterior pdf is calculated with the BMC method.

7.1 Prior quantities

Concerning the prior nuclear data, it was previously shown that I = 10 000 is enough to reach an adequate convergence
for the first three moments of the probability density functions of the important nuclear data [14,11]. An example
for the Monte Carlo sampling of the pdf for the prior keff in the case of the hmf1 (Godiva) benchmark, varying 235U
only, is presented in fig. 2(top). As observed, the prior distribution for the keff is close to a normal distribution and
additional random cases do not significantly modify its characteristics.

7.2 Posterior quantities

The convergence of the posterior quantities is also of importance, and concerns the different keff or spectral indices,
the updated cross sections, their uncertainties and correlations. In the case of the BMC method, an example of a
posterior pdf is presented in fig. 2(bottom), for the same hmf1 benchmark alone. As also observed in ref. [20], the
average and standard deviation of the posterior keff distribution do not significantly vary after 1000 iterations when
a single integral quantity is used.

In the application cases with many benchmarks together (see sect. 8), it is not practical to give such a large
number of quantities and the convergence of a selection will be presented. For the posterior cross sections and their
uncertainties, an example is presented in fig. 3 in the case of the 239Pu(n, f) cross section and its uncertainty at 1.5MeV,
using all the 14 integral quantities together, directly obtained from the application of above equations, without the
integration in a specific ENDF-6 file. In this example, the selected cross section is of relevance for the calculation of
keff and spectral indices as the neutron spectra for many benchmarks peak between 1 and 2MeV. One can see that
the cross section and its uncertainty are not significantly varying after 1000-2000 iterations for the prior, BFMC and
Mocaba methods. On the contrary, strong variations can be seen in the case of BMC. Same phenomena are observed for
posterior integral quantities and an example for the uncertainty on the F28/F25 spectral index for the pmf1 (Jezebel)
benchmark is presented in fig. 4. In the case of BFMC, the uncertainty on F28/F25 still varies during a few thousands
of iteration. On the contrary, the Mocaba method leads to very stable values for very small iteration numbers. Again,
the BMC uncertainties strongly vary for specific iteration numbers. It is not practical to present all the figures of
convergence, but a common trend is that the Mocaba method presents less variations than the BFMC method, as a
function of the iteration for the posterior nuclear data and integral quantities (see figs. 3 and 4).
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Fig. 3. Example of convergence of the 239Pu(n, f) posterior cross section at 1.5 MeV (top) and its uncertainty (bottom), taking
into account all benchmarks.
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Fig. 4. Example of convergence of the prior and posterior uncertainties on F28/F25 spectral index in the case of the pmf1
benchmark, applied to the 14 integral quantities during the updating process.

Another quantity of interest is the convergence of the standard error on the mean (SEM). In the case of unweighted

sum, the SEM is estimated by the sample standard deviation divided by
√

i, i being the sample size. Therefore its
convergence rate is proportional to 1/

√
i. In the case of BMC/BFMC and Mocaba, their convergence rates might not

follow 1/
√

i, as weighted sums are used. A convenient way to estimate the SEM is to apply the bootstrap method [28,
37] as follows. It consists in repeating samplings in a given population, randomly replacing each time the selection to
generate new data sets. In practice, the following steps are applied (as described in ref. [28]):

– selections of i samples are taken from the population of the calculated integral data, the number of selections is
300;

– weighted averages are calculated for each selection, for the prior, BMC/BFMC and Mocaba (in the case of the
prior, a simple unweighted sum is calculated);

– the standard deviation of the 300 weighted averages (for each method) is used as an estimator of the SEM.



Eur. Phys. J. Plus (2018) 133: 537 Page 13 of 23

Prior
Mocaba
BMC/5
BFMC

pmf8 keff

Iteration i

S
E

M
(p

cm
)

3000200010000

120

100

80

60

40

20

0

Fig. 5. Convergence of the standard error on the mean (SEM) in the case of the prior and posterior (BMC/BFMC and Mocaba)
for the pmf8 benchmark with keff . In this case, the 14 integral quantities are considered in the update procedures.

Table 3. Number of weights from eq. (18) being in a certain interval of the maximum weight w(max), as a function of the
number of benchmarks included in the update procedures. The effective sample size is presented in the last column (ESS). Also
indicated are the correlation terms between keff of hmf28 and F28/F25 of pmf6.

p < w(max)

1e10 > w(max)

100
Correlation ESS

(%) (%) BMC Mocaba (−)

2 7 48 −0.12 −0.12 1310

3 23 19 −0.12 −0.12 441

4 32 13 −0.09 −0.10 89

5 44 9 −0.13 −0.09 30

6 44 9 −0.13 −0.09 7

7 50 6 −0.11 −0.09 3

8 78 1 −0.25 −0.09 1

9 79 1 −0.23 −0.05 1

10 92 0.4 −0.03 −0.05 1

14 98.2 0.1 +0.53 −0.05 1

A representative example is presented in fig. 5 where the SEM is calculated in the case of the pmf8 benchmark for keff ,
but considering the 14 integral quantities from table 1. As observed, the estimated rate of convergence for the prior
is still 1/

√
i, whereas it is closer to a linear convergence for BMC for iterations above 500. In the case of the BFMC

method, the SEM follows the 1/
√

i behavior. It is also interesting to see that Mocaba provides the smaller SEM, and
BMC the largest (note the multiplying factor in the figure for the BMC curve). This test indicates that the BMC and
Mocaba equations do not lead to the same convergence rates for the quantities of interest. In the case of the BMC
method, the SEM of the pmf8 keff is relatively high even for high iteration numbers.

For the BMC method, the wi can be extremely small when considering many benchmarks together: from the
definitions of wi in eq. (18) and χ2

i in eq. (17), wi can reach very small values as wi is a product of exponentials
(χ2

i in eq. (17) is defined as a sum). In refs. [20,14], only one benchmark was considered (pmf1 or imf7), and the
individual weights wi were not too small: in ref. [14], about 18% of the weights were higher than 0.01×w(max) (w(max)

is the maximum of all the I weights). The calculated quantities with the BMC equations cannot be reliable if too
many weights are very small compared to w(max). To illustrate the decrease of the wi as a function of the number of
benchmarks, table 3 presents the number of weights being in specific ranges compared to w(max), together with the
correlations between two benchmarks quantities: keff of hmf28 and F28/F25 of pmf6. The effective sample size (ESS)
is also presented, to provide a quantitative measure of the quality of the estimated mean values [38]:

ESS =
(
∑I

i ωi)
2

∑I
i ω2

i

. (38)

Such an estimate can be directly compared to the unweighted results with a sample size i: if 10 000 samples are used and
the ESS value is 30, then the quality of the estimate is the same as if we would use 30 direct samples. It becomes clear
that the weight distribution does not have enough population in the high weights to extract meaningful correlations,
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Fig. 6. keff convergence for the pmf8 benchmark (Top: only the pmf8 benchmark is considered. Bottom: all benchmarks
considered), using the 239Pu posterior nuclear data in MCNP6 simulations.

when the number of benchmarks is above a certain value. Such weight distribution will depend on the prior C − E
values: if many NDi lead to high weights for all benchmarks, then the BMC method can be used with confidence. In
the present case, the correlation coefficients in table 3 seem to be relatively stable for less than 8 benchmark values,
indicating that this is the limit with the current set of selection of benchmarks and random nuclear data files. Same
conclusion will hold for all posterior quantities from the BMC method: the posterior values will be very comparable
to the ones for the best random file among the I cases. For uncertainties on integral values and nuclear data, they will
have the tendency to be underestimated. The BFMC method attempts to solve this problem by normalizing all the
χ2 by the minimum one. As the weights are defined by the exponential of the (normalized) χ2 in eq. (17), their spread
is much reduced compared to the one from BMC. The difference is that these weights do not follow the principle of
maximum entropy.

As explained earlier, the results of these equations in terms of integral quantities are not the final step, as the goal
is to update nominal ENDF files with the adequate nuclear data. To this end, the final quantities of interest are the
integral values calculated with such posterior ENDF files (one for each isotope) using MCNP6, and their convergence
rates. Again, a representative example showing the tendency as a function of iterative samples for a single benchmark,
pmf8, is presented in fig. 6 (note that for this benchmark, thorium is used as a reflector, and the thorium nuclear data
are not adjusted). These keff are calculated with the posterior 239Pu ENDF file, using the posterior nuclear data from

method B (multiplying the nominal nuclear data file ND0 with the ratios defined by ND
′

/ND). As observed, both
BMC and Mocaba methods seem to convergence to the experimental value with a similar convergence rate.

To be more complete, such test is repeated considering all 14 integral quantities (see fig. 6(bottom)). In this case,
whereas the BFMC and Mocaba methods seem to provide stable results after a few hundreds of iterations, the keff

values from the BMC method can strongly vary, due to the strong variations in weights as previously observed. After
these preliminary verifications of the convergence of the methods and of the posterior quantities, results with the
posterior nominal ENDF files and their uncertainties will be presented in the following section.

8 Results

Before going into the example which includes many integral quantities at once, some results are presented considering
a single benchmark quantity at a time. This helps to assess the performances of all methods.
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Table 4. Posterior C − E keff and uncertainties for specific benchmarks, each one considered individually with the method
option A. All quantities are given in pcm. Calculated values in black are within 1σ, in orange within 2σ.

Posterior BMC Posterior Mocaba

Average file Updated file

0′

A 0′

A

C − E ±∆C C − E C − E ±∆C C − E

pmf1 +11 ±195 +17 +10 ±195 +0

pmf2 +31 ±192 +27 +36 ±192 +12

pmf8 +0 ±59 −27 −1 ±60 −15

pmf22 +3 ±200 −42 +1 ±203 −33

imf1 +3 ±90 +63 +4 ±90 −118

imf2 +3 ±284 −105 +1 ±282 −101

imf7 −1 ±70 −106 −1 ±70 −48

mmf1 −1 ±160 −11 +0 ±156 −38

mmf3 +15 ±155 −13 +16 ±155 +12
P

||/P 8 46 8 42

Table 5. Posterior C − E keff and uncertainties for specific benchmarks, each one considered individually with the method
option B. All quantities are given in pcm. Calculated values in black are within 1σ, in orange within 2σ.

Posterior BMC Posterior Mocaba

Average file Updated file

0′

B 0′

B

C − E ±∆C C − E C − E ±∆C C − E

pmf1 +11 ±195 +40 +10 ±195 +17

pmf2 +31 ±192 +17 +36 ±192 +59

pmf8 +0 ±59 −22 −1 ±60 −17

pmf22 +3 ±200 −8 +1 ±203 −23

imf1 +3 ±90 −3 +4 ±90 −19

imf2 +3 ±284 −38 +1 ±282 −30

imf7 −1 ±70 −72 −1 ±70 −87

mmf1 −1 ±160 +15 +0 ±156 −25

mmf3 +15 ±155 +28 +16 ±155 +53
P ||/P 8 27 8 37

8.1 Single benchmark

Results for some keff only are presented in table 4 for the update option A. and in table 5 for the update option B. The
values C−E keff and ∆C do not change in both tables but are repeated for completeness. For all the benchmarks, the
three isotopes 235U, 238U and 239Pu are considered. The statistical uncertainty for each MCNP6 calculation is in the
order of 25 pcm. In the case of a single benchmark used in the adjustment processes, the BMC and BFMC methods
lead to very similar results. Only the C − E for BMC are therefore presented in these tables.

As shown, both BMC and Mocaba methods succeed in individually adjusting the benchmarks for the complete
adjusted distributions (see the columns C − E and C − E in both tables). This is expected as the number of random
files I is high enough, and the average bias is extremely small. When updating the nominal files with method A or B,
the performance of the posterior files can be degraded for integral quantities, but the overall behavior is satisfactory.
The absolute bias Σ||/P is also slightly smaller for the method B in the case of Mocaba. Additionally, the posterior
uncertainties are almost equal to the experimental uncertainties for both methods. As a conclusion of this test on
a set of benchmarks (all individually considered), both methods A and B perform well for the BMC and Mocaba
approach. As presented in the next section, the weight definition will differentiate the performance of the BMC and
BFMC methods.
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Fig. 7. Posterior correlation matrices for the 14 integral quantities for the BFMC (top) and Mocaba (bottom) methods. F8,
F5 and F9 are short notations for F28, F25 and F49, respectively.

8.2 All benchmarks

To be closer to the work performed in a realistic evaluation process, the posterior nuclear data need to be produced
considering many integral quantities at once. The result of these procedures can be expressed in two simple quantities:
the posterior integral quantities and their covariance matrix, and the posterior nuclear data and their covariance matrix.

8.2.1 Posterior integral data and covariance matrix

For convenience, this covariance matrix is presented in the following consisting in two distinct parts: the correlation
matrix and the uncertainties. The correlation factors for the Mocaba and BFMC methods are presented in fig. 7. As
mentioned, the prior correlation matrices are the same for both methods (see fig. 1) and the correlation values for the
BMC method are not reliable for this number of integral values. As before, the benchmarks are presented in 3 blocks,
starting with the plutonium benchmarks, followed by the mixed and intermediate benchmarks and finally the highly
enriched 235U benchmarks. The following simple observations can be done:

– The correlations between the 14 integral values are reduced compared to the prior.
– Relatively strong correlations can be observed within the blocks of similar benchmarks. This is expected as they

primarily contain the same isotopes,
– Stronger correlations between blocks appear for the BFMC method.
– And in the case of the pmf benchmarks, the F28/F25 spectral indices are not correlated with the keff (contrary to

the spectral indices of the hmf cases), as for the prior covariance matrix.
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Table 6. Posterior C −E, C−E and uncertainties for all benchmarks considered together with the method option B for BMC,
BFMC and Mocaba. All quantities are given in pcm. Calculated values in black are within 1σ, in orange within 2σ and in red
are outside 2σ.

Exp Prior Posterior BMC Posterior Mocaba Posterior BFMC TMC

Average File 0 Average File 0′

B Updated File 0′

B Average File 0 Best file 14 files

#1834

p ∆E C−E ±∆C C−E C−E ±∆C C−E C−E ±∆C C−E C−E ±∆C C−E C−E C−E

1 imf1 keff 90 −91 ±910 +363 −100 ±95 −136 −12 ±84 −218 −6 ±232 +165 +22 +18

2 imf7 keff 70 −292 ±850 −153 +12 ±80 −94 −1 ±69 −193 −19 ±191 −116 +39 +14

3 mmf1 keff 160 −132 ±670 +3 −112 ±95 −168 −117 ±98 −87 −118 ±196 −129 −72 +25

4 pmf2 keff 200 +329 ±670 +440 +290 ±115 +157 +354 ±84 +399 +447 ±165 +397 +574 +25

5 pmf1 keff 200 +77 ±780 +162 −23 ±142 −124 +55 ±106 +153 +171 ±200 +129 +413 +28

6 pmf1 F8/F5 230 −394 ±540 −230 −145 ±138 −220 −68 ±167 −40 −55 ±323 −40 −240 +9

7 mmf3 keff 160 +117 ±640 +280 +169 ±78 +68 +160 ±87 +136 +159 ±179 +61 +151 +23

8 hmf1 F9/F5 1400 −2680 ±2530 −2730 −1107 ±620 −1240 −867 ±827 −780 −1555 ±1270 −1630 −1060 +34

9 pmf22 keff 210 −85 ±796 +13 −152 ±120 −310 −86 ±109 −37 +23 ±207 −19 +220 +24

10 hmf28 keff 300 +309 ±932 +686 +163 ±115 +124 +116 ±155 +2 +274 ±298 +263 +62 +9

11 imf2 keff 300 −238 ±835 +8 −90 ±141 −218 −111 ±138 −367 −5 ±237 −112 +25 +11

12 pmf6 keff 300 +478 ±777 +559 +569 ±221 +453 +393 ±194 +490 +561 ±310 +565 +144 +13

13 pmf6 F8/F5 200 −301 ±424 −40 +29 ±114 −210 +80 ±136 −120 +110 ±256 −120 −40 +14

14 pmf8 keff 60 −192 ±734 −126 −32 ±38 −206 −43 ±56 −206 −69 ±145 +83 −125 +26
P

||/P (pcm) 414 ±480 414 214 ±67 287 176 ±75 249 272 ±147 292 207 18
P

/P (pcm) −54 ±480 −55 −38 ±67 −182 −11 ±75 −76 −35 ±147 −63 +10 +18

χ2/P 3.3 3.0 0.8 1.5 0.6 2.2 0.9 1.2 1.3 0.02

Dedicated studies to estimate correlation factors between benchmarks can be found in the literature (e.g., refs. [19,39])
and the Mocaba and BFMC approaches can certainly contribute to this field. Again, it is important to realize that
correlation matrices reflect the method applied and the types of inputs, therefore differences between theses two
matrices are expected. It can nevertheless be observed that these two matrices are similar: one presenting stronger
correlations than the other, but the signs of the correlations values are conserved.

The results for the uncertainties are presented in table 6, using method B for BMC, BFMC and Mocaba (the
results for method A are very similar and are not presented here). As observed, the posterior distributions and the
update “file 0′B” provide in general better agreement with the experimental values, compared to the prior. Without
surprise, the combination of the 14 random files with the factor X from eq. (37) provides better results. All goodness
of fit estimators presented at the bottom of table 6 indicate an improvement of the calculated values. Apart from the
combination of 14 files, the best results are obtained directly after the application of the update methods, without
implementing the changes in an ENDF-6 file; but from a practical point of view, the posterior ENDF-6 files from
both methods will eventually be given a nuclear data library. Therefore the relevant results in this study are the
performances of the posterior ENDF-6 files. A degradation of performances can be observed compared to the results of
the different equations, but the results still show sizable improvements compared to the prior. The simple method of
extracting the best file from the random set performs very well compared to the other methods. One of its drawbacks
is nevertheless that it does not allow to obtain posterior covariance matrices for the nuclear data. From the other
methods however, the calculated uncertainties are strongly reduced. The posterior uncertainties are always smaller
than the prior ones, and it can be observed that the BMC uncertainties are in most cases smaller than the Mocaba
and BFMC uncertainties. This is linked to the fact that too many weights wi are extremely small, therefore the BMC
method tends to provide results driven by a very small amount of random files having the highest weights. The BFMC
also systematically gives uncertainties larger than Mocaba. This could be mitigated by using the original [27] BFMC
definition of weight, which uses a an additional square and produces narrower distributions. This is important for the
selection of covariance matrices to be inserted in a nuclear data library.

Values presented in table 6 are plotted in fig. 8 in terms of C/E, with the experimental uncertainties. For all methods
except the combination of 14 random files, some calculated integral quantities are outside one sigma experimental
uncertainty (7 for BMC, BFMC and Mocaba, and 5 for the TMC best file). This can be partly attributed to the
presence of other isotopes for which the cross sections are considered fixed during the adjustment procedure, as for
pmf2 (containing 20% of 240Pu). Also, the considered random files contain some stiffness due to the nuclear reaction
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Fig. 8. C/E comparisons for data from table 6. The gray band is the experimental uncertainty.

models: some cross sections globally keep the same shape among all random files, and only vary in amplitude (as
for capture cross sections). This indicates the importance of having prior distributions not only covering all possible
cross section values, but also allowing for local shape deformation (about the stiffness obtained from specific reaction
model, see ref. [40]). Finally, the updates of the nuclear data are applied to specific energy groups. Even if this energy
structure is relatively fine above the resonance range, it certainly leads to some approximation.

8.2.2 Cross section covariance matrix

From the evaluation point of view, the quantities of interest are the nuclear data (in the present case: cross sections,
ν and the prompt fission neutron spectra). The posterior cross sections used in the ENDF-6 files with the MCNP6
calculations need to be in agreement with other sources of information (such as EXFOR), i.e. the posterior values
shall not be too different compared to the prior nominal cross sections. The ratios of the most important cross sections
and ν are presented in fig. 9 for the three isotopes of interest, for the BMC/BFMC and Mocaba methods. These ratios
represent the posterior cross sections as used in the ENDF-6 files (with the method B) divided by the cross section of
the unperturbed file number 0 (or nominal file). The first remark is that these ratios are different in amplitude between
Mocaba (or BFMC) and BMC, although the shapes are similar. One has to keep in mind that the BMC posterior cross
sections suffer from the curse of low weights, which tends to make the posterior cross sections very close to the ones
from the random runs having the highest weights. Therefore the plotted ratios in the case of BMC do not represent the
combination of many random cross sections for the posterior, but rather an average of a few cross sections. The second
remark is that the cross section changes in the case of Mocaba and BFMC are very similar and all relatively small,
less than 5% with a maximum change for the 239Pu(n, el) cross section. This gives some confidence in the posterior
cross sections, as many of them are believed to be well known in the libraries such as JEFF, JENDL of ENDF/B. A
detailed study of these variations is not necessary here and would be part of the general evaluation process, including
comparisons between libraries, experimental data and possibly information from other integral results. It is worth
mentioning that a previous study comparing BFMC and the Kalman method indicates a difference in the uncertainty
reduction of a factor 2, BFMC providing larger uncertainties [41]. This is similar to the ratios for some of the presented
uncertainties between Mocaba and BFMC in fig. 9. One can notice that the ν for 235U is slightly reduced, as the prior
keff for the hmf28 benchmark is too high by almost 700 pcm (only benchmark where ν of 235U play a dominant role,
see fig. 9). This denotes the importance of selecting a representative set of benchmarks, as the posterior 235U nuclear
data are likely to also reduce the keff of benchmarks not included in this process. In a real case scenario, more highly
enriched 235U systems will be considered.
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Fig. 9. Posterior 235,238U and 239Pu cross sections and ν (left) and uncertainties (right) for considering all 14 integral quantities
from the 12 benchmarks. In each rectangle the X-axis represents the incident neutron energy from 100 keV to 6 MeV.

A comparison between posterior and prior uncertainties is also presented in fig. 9. Again, the results from the BMC
method are not reliable because of the weight distribution which tends to reduce the uncertainties to zero. In the case
of Mocaba, the uncertainty reduction is not negligible, reflecting the integral uncertainty reduction (in combination
with the posterior cross section correlations). The strongest reduction concerns the fission cross sections of 235U and
239Pu. This is partially due to the fact that the prior uncertainties were on purpose very large; this reduction needs
to be seen relatively to the other experimental uncertainties such as those coming from EXFOR. This is typically the
work performed during an evaluation process and is not the subject of this work. The results only confirm that the
proposed procedures provide sensible cross section updates. The uncertainty reduction for BFMC is the smallest of
the three methods. Such changes (together with the posterior nuclear data correlations) still allow to globally reduce
the benchmark uncertainties by almost a factor of 3 (see table 6).

The last quantity to monitor is the posterior correlation matrix for the nuclear data. Such matrices were already
presented in refs. [20,14] for 239Pu and 235,238U independently, and the present benchmark selection allows to obtain
cross-correlations between these three isotopes. Figure 10 presents such correlations in the case of the BFMC method.
Three large blocks are visible, one for each isotope. Inside these blocks, smaller ones represent specific reactions with
the X- and Y -axis being the incident neutron energy from 4 keV to 20MeV, except for the prompt fission spectra,
where the axis represent the outgoing neutron energies.

As in the case of the previous publications, the prior correlation matrix does not include cross-isotope correlation,
and such correlations appear due to the integral data. It is certainly too long to have an exhaustive study of these
correlations, but one can notice the anti-correlation between ν and (n, f) for 239Pu, and between ν for 239Pu and 235U
(see ref. [14] for more detailed descriptions). These correlations play a role in the decrease of the calculated uncertainties
for the integral quantities. Their relative importance compared to the decrease of the nuclear data uncertainties will
have to be quantified in another study.

8.3 Predictive power

As demonstrated, the posterior nuclear data obtained with the different methods produce improved C − E for the
integral quantities included in the different processes. This is achieved without strongly changing the nuclear data
themselves, but it also allows a reduction of calculated uncertainties. The final question studied here concerns the
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Fig. 10. Prior (top) and posterior (bottom) correlation matrices in the case of the BFMC method for the 14 integral quantities.
The prompt fission neutron spectra are represented by the letter χ1 for the incident neutron energy of 0.5 MeV.

testing of the posterior nuclear data files with integral quantities not included in the updating procedure (so-called
“target experiment”). Different ENDF-6 files will be tested with a new set of criticality benchmarks: the prior nominal
file (file 0), the posterior files (BMC, BFMC and Mocaba) and the best prior file (file 1834). 51 benchmarks are used:
18 hmf, 18 pmf, 7 imf, 3 mmf, 4 mcf and 1 icf (mcf and icf stand for mixed and intermediate fuel in compound
form under a fast neutron spectrum, respectively. A mixed fuel contains both uranium and plutonium, whereas an
intermediate fuel does not contain plutonium but both 235U and 238U in appreciable amount). In the case of the
combination of the 14 files, the X values lead to negative keff for some benchmarks. This is expected as this method
is a simple fit without any predictive power. The goodness of fit estimators are therefore not presented, knowing that
such combination cannot be used in the evaluation process.

One should first notice that the adjustment of 235U is mainly driven by the hmf28 benchmark, being the only highly
enriched 235U benchmark for keff . As the prior C are almost 700 pcm above the E value, the effect of the adjustment
is to reduce either ν or (and) the fission cross section (see fig. 9). Therefore it is expected that the calculated keff

values for the new benchmarks are lower than the values from the file 0. Results are presented in table 7 for different
categories of benchmarks.

As observed, the best performances are obtained for the prior nominal file 0. The adjustment methods as well as
the best random file lead to larger χ2 and biases. Such conclusion is dependent on the selection of benchmarks and
on the type of random files used, but it still demonstrates that an adjustment is firstly valid for a given number of
systems, and that any use of the adjusted nuclear data outside this selection has to be checked.

Such observations do not discard the advantages of the presented methods for the uncertainty reduction, but it
puts some light on the limit of the presented approach.

9 Discussion

This study on the possibility of using specific Monte Carlo adjustment methods with integral quantities allowed to
quantify some advantages and drawbacks, taking into account the aspect of the evaluation of nuclear data. Some
positive outcomes can be mentioned such as: 1) the ability with the BFMC and Mocaba methods to produce posterior
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Table 7. Predictive power with additional benchmarks not included in the adjustment procedures. 51 benchmarks are used:
18 hmf, 18 pmf, 7 imf, 3 mmf, 4 mcf and 1 icf. Results are expressed in pcm, except for the χ2.

File BMC BFMC Mocaba Best

0 1834

All benchmarks
P ||/P 311 627 493 470 423
P

/P +117 +153 +19 −37 −162

χ2/P 3.2 13.3 9.2 8.4 7.5

hmf benchmarks
P ||/P 272 654 605 654 702
P

/P −105 −641 −590 −641 −702

χ2/P 2.4 14.3 12.9 14.3 16.0

pmf benchmarks
P

||/P 300 639 413 369 227
P

/P +190 +639 +370 +344 +159

χ2/P 3.3 11.8 6.1 4.8 2.2

Other benchmarks
P ||/P 373 582 449 371 323
P

/P +296 +468 +351 +230 +101

χ2/P 4.1 14.2 8.4 5.6 3.4

nuclear data evaluation files with improved performances compared to the prior, and 2) the possibility to reduce
the calculated benchmark uncertainties by reasonably reducing nuclear data uncertainties and using cross isotope
correlations. It also pointed out the limit of the BMC method with the necessity to have a sufficient number of
relevant weights.

Nevertheless, some improvements are still needed, such as

– Relevant choice of benchmarks. In this study, a limited number of benchmarks were used, mostly based on the keff

quantity. For a real-case application, other sources of data need to be considered, such as activation and shielding
benchmarks (e.g., from the SINBAD database), reactor benchmarks (from the IRPHE and SFCOMPO databases),
and possibly any other sources of trusted data. This will allow to span a larger field of application, hopefully
improving the predictive power of the adjusted evaluations.

– Better reaction models. As it was pointed out, the set of random files used in this work is based on reaction
models which produce rigid cross sections (the shape of some cross sections is basically not changed, while only the
amplitude is varying). This is therefore reducing the range of possibilities for integral calculations. One convenient
solution is to produce random files based on different models, such as different level density models. This has to be
explored in the future, understanding that this type of changes can produce very different cross sections, leading
to additional parameter adjustments for the prior distributions.

– Perform such study in the model parameter space. Instead of adjusting nuclear data (cross sections, ν, spectra), one
can directly propagate the adjustment to the model parameters. Once such posterior parameter distributions are
obtained, one can produce the corresponding nuclear data. This solution will be especially relevant in the resolved
resonance range where the cross section energy grid is extremely dense. Such possibility also needs to be explored.

– Directly include EXFOR data in the adjustment process. Instead of using integral data for the adjustment, one can
also include differential data from the EXFOR database. The only caution is to avoid so-called “double counting”:
using the differential data before the adjustment process to obtain a range of model parameters, and then to use
these data again during the adjustment.

– Use of a generalized χ2 definition. Since the principle of maximum entropy, on which the exp(−χ2
i /2) weight of the

BMC is based, is perhaps the most fundamental used statistical concept here, a solution is probably to be found in
the definition of χ2. The limitations of using a “naive” χ2 for differential data are given in ref. [21]. The same holds
for integral data. We often can do nothing else than assume that we have a model prediction (in this case a keff cal-
culation) and well-established experimental data and their uncertainties. It is not difficult to see that adding uncor-
related experimental information (e.g., another integral benchmark) to the χ2 definition will only lower the weight
if it is assumed uncorrelated with the rest, leading to very small numbers of the weights in the Bayesian update.
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Apart from these practical and unexplored possibilities, some other questions remain opened. The first one concerns
the production of a complete evaluated file, allowing to reduce the calculated uncertainty on integral quantities and
to obtain better C − E. As presented, none of the adjustment methods fulfill this goal. A possibility is therefore to
keep the nominal nuclear data from file 0 (best estimate) and to add an adjusted covariance matrix, for instance from
the BFMC method. This will allow to obtain the best C − E, and to reduce uncertainties. The drawback might be
that there is a loss of consistency between the nominal values and the covariance matrix, but one can argue that this
is already the case in most of the general-purpose libraries.

The second question to be answered is about the necessity to include integral experiments in the evaluation process.
As presented in the introduction, there is a need for reducing calculated uncertainties on integral quantities, and by
including some integral benchmarks in the evaluation process, such a goal is achieved. But there might be other means
to reduce the nuclear data uncertainties without explicitly using integral data, as for instance using more constraints
from nuclear reaction modeling. Such an example exists for the 238U(n, inl) reaction included in the ENDF/B-VIII
library where a better modeling allowed to significantly reduce the uncertainties of these cross section. Some questions
still remain on the validity of such approach, but it offers an alternative solution.

10 Conclusion

In this paper, we have explored the possibilities to apply different Monte Carlo adjustment methods 1) to improve
the agreement between calculated and measured integral quantities, and 2) to reduce the calculated uncertainties on
these values. As it was presented, the BFMC and Mocaba methods fulfill these goals for the selected benchmarks. This
study therefore demonstrates the applicability of these Monte Carlo methods, but also indicates their limits regarding
the predictive power in terms of biases. Still, the reduction of uncertainties is successfully demonstrated and some
future possibilities are presented.

We would like to thank Dr. O. Cabellos for his support of this work and his careful reading of this paper. This work was partly
funded by the Swiss Nuclear Safety Inspectorate ENSI and conducted within the framework of the STARS program.
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