PAUL SCHERRER INSTITUT

D. Rochman

Nuclear data uncertainty propagation Part 1: introduction and TMC.

EXTEND summer school, Uppsala University, Sweden, September 1st, 2016

- What are nuclear data (*Part 1*)
- Are they important ? (*Part 1*)
- How can they be produced for application (*Part 1*)?
- ND Uncertainties and their propagation (*Part 1*)
- TMC (*Part 1*)
- TMC + adjustment (*Part 2*)
- Applications to energy systems
 (Part 3)

All slides can be found here: <u>https://tendl.web.psi.ch/bib_rochman/presentation.html</u>

Some general facts

Leistung und Stromproduktion der Kernkraftwerke weltweit von 1955 bis 2015

Puissance et production d'électricité des centrales nucléaires dans le monde de 1955 à 2015

400 000 MW			
350 000 MW	Elektr. Nettoleistung in Megawatt (MW)		2 500 000 GWh
300 000 MW	Puissance électrique nette en mégawatts (MW)		
250 000 MW			2 000 000 GWh
200 000 MW			1 500 000 GWh
150 000 MW			1 000 000 GWh
100 000 MW			
50 000 MW			500 000 GWh
2,951,959,96,96,963,96	1,96 ,98 ,91 ,93 ,91 ,91 ,91 ,91 ,98 ,98 ,98 ,98 ,98 ,98 ,98	and the set set set and	 ۵

What is "nuclear data"?

The term "Nuclear data" can have different meaning:

- Old and dusty books, constants, mature field, code inputs, parameters
- Listing, Schrodinger equation, unexciting...
- But it is not !

What are nuclear data in this presentation ?

- From ¹H to ²⁸⁰Ds,
- From 0 to 20(0) MeV neutron induced,
- Cross sections, particle emission,
- Angular and energy distributions
- Decay data (half-lives, gamma-ray,...), fission yields, neutron yields,

• All these data are nicely condensed in text files in ENDF-6 format (80 columns)

Are nuclear data important?

In energy production, better nuclear data can help for:

- Fuel storage and processing,
- Life-time extension,
- Outside usual reactor operations,
- Dosimetry,
- Higher fuel burn-up,
- cost reduction in design of new systems,
- Isotope production,
- Shielding (people safety),
- Future systems,

Better nuclear data have a limited effect on:

- Current reactor operation,
- Current reactor safety,
- Accident simulation,
- Proliferation,
- Chernobyl, TMI, Fukushima and other accident.

Dry fuel storage, Zwilag, Switzerland

(IQNet)

How to produce nuclear data ?

Independently of the quality of the data, there are 2 ways to produce them:

First solution: manual production

- Widely used for decades up to 2100,
- Concerns all major libraries,
- Questionable QA practices (≠ than the industry standards),
- Has produced very good data,
- We know less and less why.

Second solution: "computer-assisted" production

- One word: "reproducibility",
- Concerns only one library: TENDL
- Much better QA,
- Spent your time on the physics (evaluation), not on the format

The world perception is changing and the second solution might spread around. See TALYS lab for practical exercises.

How to use nuclear data ?

In general, nuclear data files/evaluations are used by simulation codes:

Neutron transport,

- Monte Carlo: MCNP, SERPENT, TRIPOLI, MONK...
- Fuel assembly (lattice) deterministic: SCALE, DRAGON, CASMO, APPOLO...
- Full core deterministic: SCALE, PANTHER, SIMULATE, DARWIN...
- Transient: S3K,RELAP...

Isotope inventory, radioprotection

- Depletion: FISPACT, ORIGEN, CASMO, SERPENT,...
- Fuel inventory/decay heat: SNF, FISPACT,...

But prior to use them, some processing of the nuclear data is needed:

- NJOY (USA LANL),
- CALENDF (France CEA),
- PREPRO (USA LLNL),
- AMPX, PUFF (USA ORNL),
- WIMS (UK), and many other.

Nuclear data libraries

Historically, there exists today many nuclear data libraries:

- <u>General purpose</u>
 - JEFF, mostly towards reactor applications
 - JENDL, mostly towards reactor applications
 - ENDF/B, mostly towards reactor applications
 - TENDL
 - BROND, mostly towards reactor applications
 - CENDL, mostly towards reactor applications
- For fusion application
 - FENDL
 - TENDL
- For dosimetry
 - IRDFF
 - TENDL
- <u>Plus all derived libraries</u>

Processing nuclear data libraries

This is a very specific task, sometimes secretive, sometimes with specific parameters

Most simple processing: nothing done

- Fission yields, decay data,
- Libraries are read as they are by simulation codes

More sophisticated:

- For Monte Carlo transport calculation (MCNP, SERPENT)
- Usually performed with NJOY
- Can take hours: pointwise, groupwise data, Doppler broadening, reconstruction of emission spectra...

One step further:

- For Deterministic transport calculation,
- Performed with many processing codes,
- As for Monte Carlo, + self-shielding factors,
- Not always in the open literature (expert knowledge).

Nuclear data uncertainties: general comments

- Uncertainties are not errors (and vice versa),
- They are related to risks, quality of work, money, perception, fear, safety...

Uncertainty \rightleftharpoons safety \rightleftharpoons professionalism

- True uncertainties do not exist ! They are the reflection of our knowledge and methods.
- All the above for covariances
- The importance of nuclear data uncertainties should be checked. If believed negligible, please prove it !
- Our motivation: Any justification for not providing uncertainties should become obsolete

Nuclear data uncertainties: examples

Uncertainty propagation

Three methods exist today:

- 1. Based on nuclear data covariance data
- So-called "Sandwich rule" = sensitivity times covariances ,
- Provide uncertainties, sensitivities
- 2. Based on nuclear data parameter covariance data:
- So-called TMC (Total Monte Carlo)
- Sampling of model parameters,
- Provide uncertainties,
- Does not provide sensitivities, but importance factors.
- 3. In between: based on nuclear data covariance data:
- Sampling of cross section data, based on nuclear data covariances
- Provide uncertainties,
- Does not provide sensitivities, but importance factors,
- Many software: XSUSA, ACAB, NUDUNA, NUSS, SANDY, SAMPLER...

Uncertainty propagation: Sandwich rule

$$\sigma_R^2 = \sum_{i,j} S_i^R C(\alpha_i \alpha_j) S_j^R = \vec{S} C \vec{S}^T, \qquad (1)$$

Eq. (1) succinctly summarizes the information required to calculate the relative variance $\left(\sigma_R^2 = \left(\frac{\delta R}{R}\right)^2\right)$ of a linearized system response *R* as the product of the relative sensitivity coefficient \vec{S} and the relative covariance matrix *C* of inputs (α_i) , $i = 1, \ldots, N$, where

http://www.psi.ch/stars

— 2016.09.01/STARS/RD41 - (16 / 32)

PAUL SCHERRER INSTITUT

Uncertainty propagation: TMC

"Towards sustainable nuclear energy: Putting nuclear physics to work", A.J. Koning and D. Rochman, ANE 35 (2008) 2024.

- + No covariance matrices (no 2 Gb files) but every possible cross correlation included,
 - + No approximation but true probability distribution,
 - + Only essential info for an evaluation is stored,
 - + No perturbation code necessary, only "essential" codes,
 - + Feedback to model parameters,
- + Full reactor core calculation and transient,
- + Also applicable to fission yields, thermal scattering, pseudo-fission products, all isotopes (...just everything),
- + Other variants: AREVA (NUDUNA), GRS (XSUSA), CIEMAT (ACAB), PSI (NUSS), CNRS Grenoble..., based on covariance files,
 - + Many spin-offs (TENDL covariances, sensitivity, adjustment...)
 - + Computer time (not human time)
- \bigcirc + QA. \bigcirc - Need
 - Needs discipline to reproduce,
- Memory and computer time (not human time),
 - Need mentality change.

 $(\dot{})$

िNet

IQNet

IQNet

TMC: Convergence of the Monte Carlo process

Standard Deviation $\sigma' = \sigma \frac{\pi}{\sqrt{6}}$

	HMF-64.1	ADS
k _{eff}	1.00848	0.96648
	µ′=1.01394	$\mu'=0.96785$
$\sigma_k imes 10^5$	855	291
	σ′= 1097	σ′= 345

Conclusion on TMC

- Anyone can do it with the random nuclear data files from the TENDL website
- All types of nuclear data impact can be assessed,
- Most direct way to propagate uncertainties
- Better QA, better modern use of computers
- TMC is part of global approach to improve transparency and safety of nuclear simulation
- Fast TMC: Same as TMC, but all in the equivalent of a single running time,

TMC: If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library

Fast TMC: If we can do a calculation once, we can also get nuclear data uncertainties at the same time

Wir schaffen Wissen – heute für morgen

