

Nuclear data uncertainty propagation

with Monte Carlo methods

D. Rochman,

. Koning, S.C. van der Marck and D.F. daCruz

Nuclear Research and Consultancy Group,

NRG, Petten, The Netherlands

GRS Garching, July 2013

D. Rochman -1/3

Contents

- ① General information
- 2 Uncertainty propagation: the TMC method
- ③ Examples
- (4) fast TMC and fast GRS methods
- **5** Full core example
- **6** Conclusions

All slides can be found at:

GRS 2013

ftp://ftp.nrg.eu/pub/www/talys/bib_rochman/presentation.html.

Who are we ?

- Solution NRG: a leading nuclear sector service provider
- Over 50 years experience in nuclear technology
- Over 400 employees (10 in R&D reactor physics and simulations)
- Turnover approximately Meuros 60 / per year
 - High Flux Reactor, Hot Cell Laboratories and Radiological labs

What are nuclear data?

The term "nuclear data" can have different meaning,

- dusty books, constants, mature field, code inputs,
- list, Schrodinger equation, unexciting...
- but this is not ! (I'm going to prove that)

Why are nuclear data important ? (Part 1)

Better nuclear data can help for:

- ► safety margins, fuel storage,
- ► life-time extension,
- cost reduction in design of new systems,
- ► isotope production,
- ► safety of people (shielding),
- ► waste transmutation,
- development of future systems.

Better nuclear data have a limited effect on:

- current reactor operation,
- current reactor safety,...
- ◄ accident simulation,
- ◄ proliferation,
- ◀ Chernobyl, TMI, Fukushima.

Leistungszuwachs seit 1955

Elektrische Nettoleistung der Kernkraftwerke weltweit von 1955 bis 2011 in Megawatt (MW)

Augmentation de la puissance depuis 1955

Puissance électrique nette des centrales nucléaires dans le monde de 1955 à 2011 en mégawatts (MW)

Why are nuclear data important ? (Part 2)

Nuclear data uncertainties: general comments

- uncertainties are not errors (and vice versa),
- l they are related to risks, quality of work, money, perception, fear, safety...

Uncertainty \leftrightarrows safety \rightleftharpoons professionalism

- III True uncertainties do not exist ! They are the reflection of our knowledge and methods.
- \blacksquare All the above for covariances
- **#**| The importance of nuclear data uncertainties should be checked. If believed

Our motivation: Any justification for not providing uncertainties should become obsolete

₩₩ ||

Ш

Mission and objective of the NRG Physics Team

Our mission: improve nuclear simulations

"Towards sustainable nuclear energy: Putting nuclear physics to work",

A.J. Koning and D. Rochman, ANE 35 (2008) 2024.

D. Rochman - 9 / 33

TMC for nuclear data uncertainty propagation, what else ?

- \bigcirc + No covariance matrices (no 2 Gb files) but every possible cross correlation included,
- \bigcirc + No approximation but true probability distribution,
 - + Only essential info for an evaluation is stored,
 - + No perturbation code necessary, only "essential" codes,
 - + Feedback to model parameters,
 - + Full reactor core calculation and transient,
- \bigcirc + Also applicable to fission yields, thermal scattering, pseudo-fission products, all isotopes (...just everything),
- $(\dot{})$ + Other variants: AREVA (NUDUNA), GRS (XSUSA), CIEMAT (ACAB), PSI (NUSS), CNRS Grenoble..., based on covariance files, \bigcirc
 - + Many spin-offs (TENDL covariances, sensitivity, adjustment...)
 - + Computer time (not human time)
 - + QA.
 - Needs discipline to reproduce,
 - Memory and computer time (not human time),
 - Need mentality change.

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

(

 (\cdot)

 (\cdot)

Angle (deg)

Energy (MeV)

GRS 2013

D. Rochman – 11 / 33

D. Rochman - 11 / 33

Considered data in TMC (or fast TMC)

NRG

Several hundreds of random ENDF files for transport + depletion

- 3 Major actinides: ²³⁵U, ²³⁸U, ²³⁹Pu,
- Light elements: lighter than oxygen,
- Thermal scattering data: H in H₂O, D in D₂O, C in Carbon,
- All Fission yields (e.g. ^{234,235,236,238}U, ^{239,240,241}Pu, ²³⁷Np, ^{241,243}Am, ^{243,244}Cm),
- All Minor actinides (e.g. ^{234,236,237}U, ²³⁷Np, ^{238,240,241,242}Pu, Am, Cm),
- All fission products (e.g. from Ge to Er), and decay data,

(fast) TMC can be applied to any input data, propagating uncertainties to any outputs

Several hundreds of random ENDF files for transport + depletion

- 3 Major actinides: ²³⁵U, ²³⁸U, ²³⁹Pu,
- Light elements: lighter than oxygen,
- Thermal scattering data: H in H₂O, D in D₂O, C in Carbon,
- All Fission yields (e.g. ^{234,235,236,238}U, ^{239,240,241}Pu, ²³⁷Np, ^{241,243}Am, ^{243,244}Cm),
- All Minor actinides (e.g. ^{234,236,237}U, ²³⁷Np, ^{238,240,241,242}Pu, Am, Cm),
- All fission products (e.g. from Ge to Er), and decay data,

(fast) TMC can be applied to any input data, propagating uncertainties to any outputs

TMC was already applied to

- criticality-safety, shielding, pincell/assembly burn-up, full core, activation,
- PWR, BWR, Gen-IV systems,
- UO₂, MOX fuels,
 - MCNP, SERPENT, FISPACT, DRAGON, PANTHER, RELAP-5
Application: thermal scattering for H in H_2O or $S(\alpha,\beta)$ tables (with MCNP)

Random parameters of the $S(\alpha,\beta)$ for inelastic scattering

Systematical study on UO₂/MOX assembly uncertainties

- Different UO₂/MOX assemblies (PWR, BWR, VVER, AGR, CANDU, fast systems),
- Burn-up calculated with SERPENT,
- All major nuclear data taken into account.
- \implies systematical study on k_{eff} , inventory, heat...

Comparison of $\Delta \mathbf{k}_{\infty}$ **for assemblies and full core (SERPENT)**

TMC applied to PWR assembly burn-up calculations with DRAGON N

D. Rochman – 16 / 33

TMC applied for burn-up calculations: decay heat

TMC applied for burn-up calculations: decay heat uncertainties

Effect of H in H₂O for a full core PWR (courtesy of O. Cabellos, UPM, Spain)

Method: TMC applied to COBAYA (3D multigroup core calculations) + SIMULA (coupled neutronic-thermohydraulics 3D core calculations)

		NDU TSII	U STR UPM	IALE	S				ļ	I.2 PWR	proble	em de	escri	ption
PWR	(WES	STIN	GHO	USE)	, 31	oops	, 15	or FA,	power	2775. MVVth	FUEL	TYPE	w/o(%)	WABAS
14	CORE											1 OFA	2.10	0
	1	2	3	4	5	6	7	8				2 OFA	3.10	Š
1	1	13	4	21	6	21	16	14				A OFA	3.24	0
2	13	11	15	2	16	6	20	7				5 OFA	3.24	0
3	4	15	3	21	8	22	19					E OFA	3.24	
4	21	2	21	9	18	20	5					7 OFA	9.24	0
5	6	16	8	18	12	17						7 OFA	3.24	2
6	21	6	22	20	17							8 OFA	3.24	0
7	16	20	19	10								9 OFA	3.24	0
8	14	7									3	10 OFA	3.24	0
											8	11 OFA	3.24	0
3	v										22	12 AEF	3.60	0
AVE. BUR	NUP PI	ER FU	EL AS	SEMBLY	C .						3	13 AEF	3.60	0
	1		2	3	4		5	6	7	8	:	14 AEF	3.60	0
1	18.13	/ 11. 2 16	662 2 188 1	7.397	28 90	0 30	.867	0.000	14.984	11.662	:	15 AEF	3.60	0
3	27.39	7 13.	130 2	7.572	0.00	0 22	.778	0.000	0.000	30.151	:	16 AEF	3.60	0
4	0.00	0 28.	902	0.000	30.7	55 15	.236	0.000	30.124		:	17 AEF	3.60	0
5	30.86	7 12.	155 2	2.778	15.23	36 13	.123	14.882			:	18 AEF	3.60	0
6	0.00	0 28.	866	0.000	0.0	00 14	.882					19 AEF	3.60	0
8	11.66	2 30.	191	0.000	30.30						:	20 AEF	3.60	4
											:	21 AEF	3.60	8
											:	22 AEF	3.60	12

UAM7 – Paris (France), April 10-12, 2013

GRS 2013

20

Effect of H in H₂O for a full core PWR (courtesy of O. Cabellos, UPM, Spain)

GRS 2013

In TMC:

If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.

In TMC:

If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.

Well, then uncertainty propagation with TMC takes 1000×1000 longer than a single calculation...

(Each $\sigma_{\text{statistics}}$ needs to be small)

In TMC:

If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.

Well, then uncertainty propagation with TMC takes 1000×1000 longer than a single calculation...

(Each $\sigma_{statistics}$ needs to be small)

There is a solution with Monte Carlo codes: (in fact 2 solutions)

- ✤ fast GRS method,
- ✤ and fast TMC.

GRS 2013

"Efficient use of Monte Carlo: uncertainty propagation",

D. Rochman, W. Zwermann et al., submitted to NSE, May 2013.

D. Rochman – 22 / 33

2012: fast GRS method

GRS 2013

NRG

First presented in PHYSOR-2012 by W. Zwermann *et al*.. It takes advantage of conditional expectations:

If two output variables $k^{(1)}$ and $k^{(2)}$ are identically distributed and conditionally independent given the vector of nuclear data input then

 $\sigma_{\text{nuclear data}} = \sqrt{\text{cov}(\mathbf{k}^{(1)}, \mathbf{k}^{(2)})}$

2012: fast GRS method

First presented in PHYSOR-2012 by W. Zwermann *et al*.. It takes advantage of conditional expectations:

If two output variables $k^{(1)}$ and $k^{(2)}$ are identically distributed and conditionally independent given the vector of nuclear data input then

 $\sigma_{\text{nuclear data}} = \sqrt{\text{cov}(\mathbf{k}^{(1)}, \mathbf{k}^{(2)})}$

In practice:

- 1. perform i = 1..500 MCNP short calculations with random nuclear data and a fixed seed $s_1 \Longrightarrow k_{eff}^{(1)}(i)$
- 2. repeat for j = 1..500, same random nuclear data but fixed seed $s_2 \implies k_{eff}^{(2)}(j)$

There is no necessity to have small $\sigma_{statistics}$!! each run can be (very) short

fast GRS method

GRS 2013

 2×500 "short" runs ~ $2 \times$ "long" run in time

If a single calculation takes *m* histories (σ_{stat} small enough), then repeat it *n* times with *m/n* histories, random nuclear data and random seeds.

 $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds.

2013: fast TMC method... If a single calculation takes *m* histories (σ_{stat} small enough), then repeat it *n* times with *m/n* histories, random nuclear data and random seeds. $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds. run 0 ENDF/B-VII.1 seed s₀ *m* histories T sec. $k \pm \sigma_{\text{stat}}$

2013: fast TMC method... If a single calculation takes *m* histories (σ_{stat} small enough), then repeat it *n* times with *m/n* histories, random nuclear data and random seeds. $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds. <u>run 0 ENDF/B-VII.1 seed s₀ *m* histories T sec. $k \pm \sigma_{\text{stat}}$ run 1 nuclear data 1 seed s₁ *m/n* hist. T/n sec. $k_1 \pm \sigma_1 \sim \sigma_{\text{stat}} \sqrt{n}$ </u>

2013: fast TMC method								
If a single calculation takes <i>m</i> histories (σ_{stat} small enough), then repeat it <i>n</i> times with <i>m/n</i> histories, random nuclear data and random seeds. $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds.								
run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k \pm \sigma_{stat}$			
run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{stat} \sqrt{n}$			
run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2 \pm \sigma_2$			

If a single calculation takes <i>m</i> histories (σ_{stat} small enough), then repeat it <i>n</i> times with <i>m/n</i> histories, random nuclear data and random seeds. $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds.						
run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k \pm \sigma_{stat}$	
run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{\text{stat}} \sqrt{n}$	
run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2 \pm \sigma_2$	
•		• •			•	
run n	nuclear data <i>n</i>	seed s_n	m/n hist.	T/n sec.	$k_n \pm \sigma_n$	

If a single calculation takes <i>m</i> histories (σ_{stat} small enough), then repeat it <i>n</i> times with <i>m/n</i> histories, random nuclear data and random seeds. $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds.							
run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k \pm \sigma_{stat}$		
run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{\text{stat}} \sqrt{n}$		
run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2 \pm \sigma_2$		
•		• •			• •		
run n	nuclear data <i>n</i>	seed s_n	m/n hist.	T/n sec.	$k_n \pm \sigma_n$		
n runs		$\sigma(\overline{k})$	$) \sim \sigma_{stat}$	T sec.			

	If a	single calcula then reprint then reprint the single calcula then reprint the single calcula then reprint the single calcula the single calcula th	ation tal peat it <i>n</i> n nuclea $\sigma^2_{\text{statistic}}$	$\frac{1}{2} \cos \frac{m}{2} + \sigma_{\text{nuclear}}^2$	pries (σ_{sta} h m/n his random r data still	at small enough), stories, seeds. holds.
	run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k \pm \sigma_{stat}$
-	run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{\text{stat}} \sqrt{n}$
	run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2 \pm \sigma_2$
	• •		• •			•
	run <i>n</i>	nuclear data <i>n</i>	seed s_n	<i>m/n</i> hist.	T/n sec.	$\mathbf{k}_n \pm \mathbf{\sigma}_n$
	n runs		$\left\{ \begin{array}{c} \sigma(\overline{k}) \\ \sigma_{total}^2 \end{array} \right.$	$\sim \sigma_{\text{stat}}$ = $\frac{1}{n-1} \sum_{i=1}^{n} $	T sec. $\int_{1}^{1} \left(k_{i} - \overline{k} \right)^{2} \checkmark$	
GF	S 2013					D. Rochman – 25 / 33

If a single calculation takes <i>m</i> histories (σ_{stat} small enough), then repeat it <i>n</i> times with <i>m/n</i> histories, random nuclear data and random seeds. $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds.							
run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k\pm\sigma_{stat}$		
run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{stat} \sqrt{n}$		
run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2 \pm \sigma_2$		
• •		• • •			• • •		
run n	nuclear data <i>n</i>	seed s_n	m/n hist.	T/n sec.	$\mathbf{k}_n \pm \mathbf{\sigma}_n$		
n runs		$\begin{cases} \sigma^2_{total} \\ \sigma^2_{statistic} \end{cases}$	$= \frac{1}{n-1} \sum_{i=1}^{n} \sum_{i=1}^{n} \sigma_{i}$	T sec. $\int_{1}^{2} (k_i - \overline{k})^2 \checkmark$			
					D. Rochman – 25 / 33		

The fast methods

- \odot as fast as S/U methods (1-2 × longer than 1 single calculation),
- \odot tested on criticality & shielding benchmarks, burn-up (k_{eff} and inventory),

The fast methods

- \odot as fast as S/U methods (1-2 × longer than 1 single calculation),
- \odot tested on criticality & shielding benchmarks, burn-up (k_{eff} and inventory),
- © Example: the Martin-Hoogenboom benchmark

MCNP6 model: 241 fuel assemblies,

- * $357 \times 357 \times 100$ regions $(1.26 \times 1.26 \times 3.66 \text{ cm}^3)$: 6.4 million cells for generated power (f7)
- * 1 calculation takes 2×10^{11} histories ($\sigma_{statistics} = 0.25$ % at the center, 500 weeks on 1 cpu)

- * $357 \times 357 \times 100$ regions $(1.26 \times 1.26 \times 3.66 \text{ cm}^3)$: 6.4 million cells for generated power (f7)
- * 1 calculation takes 2×10^{11} histories ($\sigma_{\text{statistics}} = 0.25$ % at the center, 500 weeks on 1 cpu)
- ➤ Uncertainty on local pin power due to ²³⁵U, ²³⁸U, ²³⁹Pu and H in H₂O thermal scattering in each cell ?

- * TMC: 500 random runs of 2×10^{11} histories (500 weeks for each),
- ✤ TMC is not applicable,
- * Uncertainties with the fast TMC and fast GRS methods,

- * TMC: 500 random runs of 2×10^{11} histories (500 weeks for each),
- ✤ TMC is not applicable,
- * Uncertainties with the fast TMC and fast GRS methods,
- * Issues: (1) source convergence + (2) statistical uncertainty estimation.

- * TMC: 500 random runs of 2×10^{11} histories (500 weeks for each),
- ✤ TMC is not applicable,
- * Uncertainties with the fast TMC and fast GRS methods,
- * Issues: (1) source convergence + (2) statistical uncertainty estimation.

(1) Source convergence

- ➡ For both methods, a first calculation is run with fixed nuclear data to obtain a reasonably converged fission source.
 - All subsequent short simulations start with this fission source:
 - each with 10 inactive cycles and 90 active cycles of 4×10^6 histories, and random nuclear data,
 - source convergence tested with the MCNP6 built-in indicator (fission source entropy).
 - \checkmark 362 short runs out of 508 were then accepted for fast TMC.
 - \sim 2 × 122 short runs out of 2 × 328 were then accepted for fast GRS.

(2) Statistical uncertainty estimation

- * In MCNP eigenvalue calculation, σ_{stat} is usually underestimated.
- * An independent estimation of σ_{stat} is therefore necessary for fast TMC,
- ✤ From the 508 short runs, the first 389 were repeated with fixed nuclear data,
- * 274 were then accepted due to source convergence.

(2) Statistical uncertainty estimation

- * In MCNP eigenvalue calculation, σ_{stat} is usually underestimated.
- * An independent estimation of σ_{stat} is therefore necessary for fast TMC,
- * From the 508 short runs, the first 389 were repeated with fixed nuclear data,
- ✤ 274 were then accepted due to source convergence.
- * 9 % difference for k_{eff}
- * for generated power (f7): ratio is 1.019 ± 0.040 .

Therefore, for local power, the MCNP estimation of σ_{stat} is good enough.

Fast TMC & GRS methods on a full core: k_{eff} **uncertainty**

Fast TMC & GRS methods on a full core: generated local power

Fast TMC & GRS methods on a full core: generated local power

Conclusions

GRS 2013

-NRG Anyone can do it with the random nuclear data files from www.talys.eu/tendl-2012 (actinides, thermal scattering...)
Conclusions

GRS 2013

Anyone can do it with the random nuclear data files from <u>www.talys.eu/tendl-2012</u> (actinides, thermal scattering...)

TMC: If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.

Conclusions

Anyone can do it with the random nuclear data files from <u>www.talys.eu/tendl-2012</u> (actinides, thermal scattering...)

fast TMC and GRS methods: If we can do a calculation once, we can also get nuclear data uncertainties in twice the time (or less).

