

Uncertainty evaluations and validations

D. Rochman and A.J. Koning

Nuclear Research and Consultancy Group,

NRG, Petten, The Netherlands

May 22, 2008

Contents

① Motivations for a change:

 \implies a roadmap to ban covariance files

② Concept:

 \implies Monte Carlo from nuclear data to large-scale systems

- (3) Where can we apply it ? \implies (needed tools & knowledge)
- ④ How does it work ?
- ⑤ Examples with Pb isotopes:

 \implies k_{eff} benchmarks and reactors

[®] Examples on global scale:

 \implies k_{eff} benchmarks, fusion shielding, reactivity swing

⑦ Pros, Cons and Conclusions

Usual procedures in uncertainty propagation imply

rigid format,

- rigid format,
- need for fixed libraries of cross section values,

- rigid format,
- need for fixed libraries of cross section values,
- need for processing, sensitivity and perturbation codes,

- rigid format,
- need for fixed libraries of cross section values,
- need for processing, sensitivity and perturbation codes,
- group scheme,

- rigid format,
- need for fixed libraries of cross section values,
- need for processing, sensitivity and perturbation codes,
- group scheme,
- simplification of covariance matrix (restricted correlation),

- rigid format,
- need for fixed libraries of cross section values,
- need for processing, sensitivity and perturbation codes,
- group scheme,
- simplification of covariance matrix (restricted correlation),
- necessity of linearizing inherently nonlinear relationships,

Usual procedures in uncertainty propagation imply

- rigid format,
- need for fixed libraries of cross section values,
- need for processing, sensitivity and perturbation codes,
- group scheme,
- simplification of covariance matrix (restricted correlation),
- necessity of linearizing inherently nonlinear relationships,
- ☞ and so on...

➤ Most of these routines were developed decades ago when the support for nuclear data and nuclear reactor physics research was sufficient to allow them to be produced !

After all, not a new idea

Here is the mantra in which we believe and motivates us:

"Researchers should cease trying to be clever in devising refinements to old methods that were developed when computational resources were limited.

Here is the mantra in which we believe and motivates us:

"Researchers should cease trying to be clever in devising refinements to old methods that were developed when computational resources were limited.

Instead, their creative instincts should be redirected to unleashing the full potential of computers for **brute** force analysis"

D. Smith, Santa Fe 2004

Everywhere where there are nuclear data (not hardcoded)

I Everywhere where there are nuclear data (not hardcoded)

 \implies Monte Carlo codes (MCNP, Tripoli...)

- *I* Everywhere where there are nuclear data (not hardcoded)
- \implies Monte Carlo codes (MCNP, Tripoli...)
- \implies Deterministic codes (APOLLO, WIMS...)

C Everywhere where there are nuclear data (not hardcoded)

 \implies Monte Carlo codes (MCNP, Tripoli...)

 \implies Deterministic codes (APOLLO, WIMS...)

 \implies Quantities: criticality, flux (+ all from SG-26), shielding and fusion (with EAF files)

I Everywhere where there are nuclear data (not hardcoded)

- \implies Monte Carlo codes (MCNP, Tripoli...)
- \implies Deterministic codes (APOLLO, WIMS...)

 \implies Quantities: criticality, flux (+ all from SG-26), shielding and fusion (with EAF files)

I Everywhere where there are nuclear data (not hardcoded)

- \implies Monte Carlo codes (MCNP, Tripoli...)
- \implies Deterministic codes (APOLLO, WIMS...)

 \implies Quantities: criticality, flux (+ all from SG-26), shielding and fusion (with EAF files)

```
Stable Nuclear reaction code: TALYS
```


I Everywhere where there are nuclear data (not hardcoded)

- \implies Monte Carlo codes (MCNP, Tripoli...)
- \implies Deterministic codes (APOLLO, WIMS...)

 \implies Quantities: criticality, flux (+ all from SG-26), shielding and fusion (with EAF files)

- Stable Nuclear reaction code: TALYS
- Monte Carlo transport code: MCNP

Z Everywhere where there are nuclear data (not hardcoded)

- \implies Monte Carlo codes (MCNP, Tripoli...)
- \implies Deterministic codes (APOLLO, WIMS...)

 \implies Quantities: criticality, flux (+ all from SG-26), shielding and fusion (with EAF files)

- Stable Nuclear reaction code: TALYS
- Monte Carlo transport code: MCNP
- Tabulated resonance parameters

7/19

7/19

7/19

7/19

NRG * Full evaluations for $^{204-208}$ Pb (see NIM A589 (2008) 85 for evaluation)

- * Full evaluations for $^{204-208}$ Pb (see NIM A589 (2008) 85 for evaluation)
- * Parameter uncertainty assessment and Monte Carlo maximum likelihood estimate with "accept-reject" method,

NRG

- [∗] Full evaluations for ^{204–208}Pb (see NIM A589 (2008) 85 for evaluation)
- * Parameter uncertainty assessment and Monte Carlo maximum likelihood estimate with "accept-reject" method,
- **★ 5000** random ENDF files

- * Full evaluations for $^{204-208}$ Pb (see NIM A589 (2008) 85 for evaluation)
- * Parameter uncertainty assessment and Monte Carlo maximum likelihood estimate with "accept-reject" method,
- **★ 5000** random ENDF files
- * Applied on k_{eff} and β_{eff} for thermal and fast criticality benchmarks (LCT-10 and HMF-64) and to ADS and LFR

- ***** Full evaluations for $^{204-208}$ Pb (see NIM A589 (2008) 85 for evaluation)
- * Parameter uncertainty assessment and Monte Carlo maximum likelihood estimate with "accept-reject" method,
- **★ 5000** random ENDF files
- * Applied on k_{eff} and β_{eff} for thermal and fast criticality benchmarks (LCT-10 and HMF-64) and to ADS and LFR

 $k_{eff} = 1.01028 \pm (60 \text{ pcm and } 212 \text{ pcm})$ $k_{eff} = 1.00894 \pm (60 \text{ pcm and } 240 \text{ pcm})$

Mean $\mu' = \mu + \gamma \sigma$ Standard Deviation $\sigma' = \sigma \frac{\pi}{\sqrt{6}}$

	HMF-64.1	ADS
k _{eff}	1.00848	0.96648
	μ′=1.01394	$\mu' = 0.96785$
$\sigma_k \times 10^5$	855	291
	σ′=1097	σ'=345

Why not a Normal distribution for k_{eff} ?

(1) The central limit theorem does not apply

Why not a Normal distribution for k_{eff}?

Any safety related issue regarding high k_{eff} tail ?

'In general, this paper will or will not be a breakthrough in methodology if the [practicality and robustness] can or can not be demonstrated.",

ANE Referee, May 2008

'In general, this paper will or will not be a breakthrough in methodology if the [practicality and robustness] can or can not be demonstrated.'', ANE Referee, May 2008

Okay, let's go from academic solutions to mass production !

∞ Default TALYS calculation + Resonance parameters (RP)

'In general, this paper will or will not be a breakthrough in methodology if the [practicality and robustness] can or can not be demonstrated.", ANE Referee, May 2008

Okay, let's go from academic solutions to mass production !

Default TALYS uncertainties + RP uncertainties derived from the Atlas

'In general, this paper will or will not be a breakthrough in methodology if the [practicality and robustness] can or can not be demonstrated.', ANE Referee, May 2008

Okay, let's go from academic solutions to mass production !

Default TALYS calculation + Resonance parameters (RP)

Default TALYS uncertainties + RP uncertainties derived from the Atlas

5 100 to 2000 ENDF files per isotope from ¹⁹F to ²⁰⁸Pb (100 isotopes)

'In general, this paper will or will not be a breakthrough in methodology if the [practicality and robustness] can or can not be demonstrated.', ANE Referee, May 2008

Okay, let's go from academic solutions to mass production !

ℬ Default TALYS calculation + Resonance parameters (RP)

- ₯ Default TALYS uncertainties + RP uncertainties derived from the Atlas
- 3 100 to 2000 ENDF files per isotope from ¹⁹F to ²⁰⁸Pb (100 isotopes)
- Iso criticality-safety benchmarks calculated (> 30 000 calculations) from
 S. van der Mark's list

'In general, this paper will or will not be a breakthrough in methodology if the [practicality and robustness] can or can not be demonstrated.', ANE Referee, May 2008

Okay, let's go from academic solutions to mass production !

ℬ Default TALYS calculation + Resonance parameters (RP)

- ₯ Default TALYS uncertainties + RP uncertainties derived from the Atlas
- 5 100 to 2000 ENDF files per isotope from ¹⁹F to ²⁰⁸Pb (100 isotopes)
- Iso criticality-safety benchmarks calculated (> 30 000 calculations) from
 S. van der Mark's list
- No All Oktavian shielding benchmarks (neutrons and gammas)

'In general, this paper will or will not be a breakthrough in methodology if the [practicality and robustness] can or can not be demonstrated.', ANE Referee, May 2008

Okay, let's go from academic solutions to mass production !

ℬ Default TALYS calculation + Resonance parameters (RP)

- ₯ Default TALYS uncertainties + RP uncertainties derived from the Atlas
- 5 100 to 2000 ENDF files per isotope from ¹⁹F to ²⁰⁸Pb (100 isotopes)
- Iso criticality-safety benchmarks calculated (> 30 000 calculations) from
 S. van der Mark's list
- Mo All Oktavian shielding benchmarks (neutrons and gammas)
- Reactivity swing for a LWR using an "Inert Matrix Fuel" (Pu and Mo),
 Westinghouse 3 loops type reactor

Examples of k_{eff} benchmarks for ¹⁹F

Examples of shielding benchmarks and reactivity swing

(Blind Taly calculations)

Examples of shielding benchmarks and reactivity swing

Also applied to Mn, Co, Al, Cu Oktavian benchmarks
Examples of shielding benchmarks and reactivity swing

- (Blind Taly calculations)
- 4 Also applied to Mn, Co, Al, Cu Oktavian benchmarks

4 and industrial PWR reactor for life-time extension (uncertainty on the reactor pressure vessel damage)

Image: Tros and Cons
Image: No Sector Se

○ + No MF 32-35 (no 2 Gb files) but every possible cross correlation included

○ + No approximation but true probability distribution

NRG

- + No MF 32-35 (no 2 Gb files) but every possible cross correlation included
- + No approximation but true probability distribution
- \bigcirc + Only essential info for an evaluation is stored

- + No MF 32-35 (no 2 Gb files) but every possible cross correlation included
- + No approximation but true probability distribution
- \bigcirc + Only essential info for an evaluation is stored
- + No perturbation code necessary, only "essential" codes

- + No MF 32-35 (no 2 Gb files) but every possible cross correlation included
- + No approximation but true probability distribution
- \bigcirc + Only essential info for an evaluation is stored
- + No perturbation code necessary, only "essential" codes
- + Feedback to model parameters

- + No MF 32-35 (no 2 Gb files) but every possible cross correlation included
- + No approximation but true probability distribution
- \bigcirc + Only essential info for an evaluation is stored
- + No perturbation code necessary, only "essential" codes
- + Feedback to model parameters
- + (Random) EAF libraries

- + No MF 32-35 (no 2 Gb files) but every possible cross correlation included
- + No approximation but true probability distribution
- \bigcirc + Only essential info for an evaluation is stored
- + No perturbation code necessary, only "essential" codes
- + Feedback to model parameters
- + (Random) EAF libraries
- \bigcirc + QA

- + No MF 32-35 (no 2 Gb files) but every possible cross correlation included
- + No approximation but true probability distribution
- \bigcirc + Only essential info for an evaluation is stored
- + No perturbation code necessary, only "essential" codes
- + Feedback to model parameters
- 😳 + (Random) EAF libraries
- ⊖ + QA
- 🙃 Needs discipline to reproduce

- + No MF 32-35 (no 2 Gb files) but every possible cross correlation included
- + No approximation but true probability distribution
- \bigcirc + Only essential info for an evaluation is stored
- + No perturbation code necessary, only "essential" codes
- + Feedback to model parameters
- + (Random) EAF libraries
- \bigcirc + QA
- 🙃 Needs discipline to reproduce
- 🙃 Memory and computer time

- + No MF 32-35 (no 2 Gb files) but every possible cross correlation included
- + No approximation but true probability distribution
- \bigcirc + Only essential info for an evaluation is stored
- + No perturbation code necessary, only "essential" codes
- + Feedback to model parameters
- + (Random) EAF libraries
- \bigcirc + QA
- 🙃 Needs discipline to reproduce
- 🙃 Memory and computer time
- Complexity for full reactor core calculation unknown

- + No MF 32-35 (no 2 Gb files) but every possible cross correlation included
- + No approximation but true probability distribution
- \bigcirc + Only essential info for an evaluation is stored
- + No perturbation code necessary, only "essential" codes
- + Feedback to model parameters
- + (Random) EAF libraries
- \bigcirc + QA
- 🙃 Needs discipline to reproduce
- 🙃 Memory and computer time
- ⊖ Complexity for full reactor core calculation unknown
- 🙃 Role of data centers would change

✗ New methodology to propagate nuclear data uncertainty to integral quantities (k_{eff} benchmarks, shielding benchmarks, reactivity swing, neutron flux for commercial reactor) via Monte Carlo

- ✗ New methodology to propagate nuclear data uncertainty to integral quantities (k_{eff} benchmarks, shielding benchmarks, reactivity swing, neutron flux for commercial reactor) via Monte Carlo
- Proof of principle with high quality Pb evaluations

- ✗ New methodology to propagate nuclear data uncertainty to integral quantities (k_{eff} benchmarks, shielding benchmarks, reactivity swing, neutron flux for commercial reactor) via Monte Carlo
- Proof of principle with high quality Pb evaluations
- \blacksquare Mass production tested on more than 150 benchmarks

- ✗ New methodology to propagate nuclear data uncertainty to integral quantities (k_{eff} benchmarks, shielding benchmarks, reactivity swing, neutron flux for commercial reactor) via Monte Carlo
- Proof of principle with high quality Pb evaluations
- \blacksquare Mass production tested on more than 150 benchmarks
- ✗ "Paper to present the principle": under revision for ANE

- ✗ New methodology to propagate nuclear data uncertainty to integral quantities (k_{eff} benchmarks, shielding benchmarks, reactivity swing, neutron flux for commercial reactor) via Monte Carlo
- Proof of principle with high quality Pb evaluations
- Mass production tested on more than 150 benchmarks
- ✗ "Paper to present the principle": under revision for ANE
- \Box Needs for better sampling in the resonance region

- ✗ New methodology to propagate nuclear data uncertainty to integral quantities (k_{eff} benchmarks, shielding benchmarks, reactivity swing, neutron flux for commercial reactor) via Monte Carlo
- Proof of principle with high quality Pb evaluations
- Mass production tested on more than 150 benchmarks
- ✗ "Paper to present the principle": under revision for ANE
- \Box Needs for better sampling in the resonance region
- □ Needs for a better "accept-reject" mechanism

- ✗ New methodology to propagate nuclear data uncertainty to integral quantities (k_{eff} benchmarks, shielding benchmarks, reactivity swing, neutron flux for commercial reactor) via Monte Carlo
- Proof of principle with high quality Pb evaluations
- Mass production tested on more than 150 benchmarks
- ✗ "Paper to present the principle": under revision for ANE
- $\hfill\square$ Needs for better sampling in the resonance region
- □ Needs for a better "accept-reject" mechanism
- □ What if nuclear modeling does not match the accuracy of the measurements ? (how to sample ?)

- ✗ New methodology to propagate nuclear data uncertainty to integral quantities (k_{eff} benchmarks, shielding benchmarks, reactivity swing, neutron flux for commercial reactor) via Monte Carlo
- Proof of principle with high quality Pb evaluations
- Mass production tested on more than 150 benchmarks
- ✗ "Paper to present the principle": under revision for ANE
- $\hfill\square$ Needs for better sampling in the resonance region
- \Box Needs for a better "accept-reject" mechanism
- □ What if nuclear modeling does not match the accuracy of the measurements ? (how to sample ?)
- □ Needs to develop best central-value evaluations (non-fissile and fissile) ?