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Usual procedures in uncertainty propagation imply

☞ rigid format,

☞ need for fixed libraries of cross section values,

☞ need for processing, sensitivity and perturbation codes,

☞ group scheme,

☞ simplification of covariance matrix (restricted correlation),

☞ necessity of linearizing inherently nonlinear relationships,

☞ and so on. . .

➸ Most of these routines were developed decades ago when the support
for nuclear data and nuclear reactor physics research was sufficient to

allow them to be produced !
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Here is the mantra in which we believe and motivates us:

“Researchers should cease trying to be clever in devising refinements to
old methods that were developed when computational resources were

limited.

Instead, their creative instincts should be redirected to unleashing the full
potential of computers for brute force analysis”

D. Smith, Santa Fe 2004

=⇒ Most straightforward way: Global Monte Carlo Approach !



After all, not a new idea

4 / 19

Here is the mantra in which we believe and motivates us:

“Researchers should cease trying to be clever in devising refinements to
old methods that were developed when computational resources were

limited.
Instead, their creative instincts should be redirected to unleashing the full

potential of computers for brute force analysis”

D. Smith, Santa Fe 2004

=⇒ Most straightforward way: Global Monte Carlo Approach !



We are proposing a conceptual revolution

5 / 19

(integral, differential)

Experiments
(basic quantities)

Evaluation 1
(uncertainties)

Evaluation 2

Formatting

Checking

(MCNP, Perturbation)

Benchmarks
(NJOY)

Processing Library

�

�

� � � �

� �

� �

(basic quantities + uncertainties)

Evaluation



We are proposing a conceptual revolution

5 / 19

(integral, differential)

Experiments
(basic quantities)

Evaluation 1
(uncertainties)

Evaluation 2

Formatting

Checking

(MCNP, Perturbation)

Benchmarks
(NJOY)

Processing Library

�

�

� � � �

� �

� �

�

�

(basic quantities + uncertainties)

Evaluation



We are proposing a conceptual revolution

5 / 19

(integral, differential)

Experiments
(basic quantities)

Evaluation 1
(uncertainties)

Evaluation 2

Formatting

Checking

(MCNP, Perturbation)

Benchmarks
(NJOY)

Processing Library

�

�

� � � �

� �

� �

�

�

(basic quantities + uncertainties)

Evaluation



Fields of application & Needs

6 / 19

Where can it be applied ?

✑ Everywhere where there are nuclear data (not hardcoded)

=⇒ Monte Carlo codes (MCNP, Tripoli...)
=⇒ Deterministic codes (APOLLO, WIMS...)
=⇒ Quantities: criticality, flux ( + all from SG-26), shielding and fusion (with
EAF files)

In the following, we will restrict ourselves to elements between 19F and 209Bi (for
the time being):

✑ Stable Nuclear reaction code: TALYS

✑ Monte Carlo transport code: MCNP

✑ Tabulated resonance parameters
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Examples with Pb isotopes
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❅ Full evaluations for 204−208Pb (see NIM A589 (2008) 85 for evaluation)

❅ Parameter uncertainty assessment and Monte Carlo maximum likelihood
estimate with “accept-reject” method,

❅ 5000 random ENDF files

❅ Applied on keff and βeff for thermal and fast criticality benchmarks (LCT-10
and HMF-64) and to ADS and LFR
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HMF64-1
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Why not a Normal distribution for keff ?
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(1) The central limit theorem does not apply

(2) Cross sections do not follow a Gaussian distribution:

En = 3MeV

206Pb(n,γ)

Cross Section (mb)

C
ou

n
ts

/c
h
an

n
el

6420

50

40

30

20

10

0

C
ou

n
ts

/C
h
an

n
el

20

10

0

Cross section (b)

3.0 2.6 2.2 1.8 1.4

E
n
er

gy
(M

eV
)4.0

3.5

3.0

2.5

206Pb(n,inl)

Any safety related issue regarding high keff tail ?



Why not a Normal distribution for keff ?

11 / 19

(1) The central limit theorem does not apply
(2) Cross sections do not follow a Gaussian distribution:

En = 3MeV

206Pb(n,γ)

Cross Section (mb)

C
ou

n
ts

/c
h
an

n
el

6420

50

40

30

20

10

0

C
ou

n
ts

/C
h
an

n
el

20

10

0

Cross section (b)

3.0 2.6 2.2 1.8 1.4

E
n
er

gy
(M

eV
)4.0

3.5

3.0

2.5

206Pb(n,inl)

Any safety related issue regarding high keff tail ?



Global calculations: from 19F to 208Pb
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“In general, this paper will or will not be a breakthrough in methodology if the
[practicality and robustness] can or can not be demonstrated.”,

ANE Referee, May 2008

Okay, let’s go from academic solutions to mass production !

® Default TALYS calculation + Resonance parameters (RP)

® Default TALYS uncertainties + RP uncertainties derived from the Atlas

® 100 to 2000 ENDF files per isotope from 19F to 208Pb (100 isotopes)

® 150 criticality-safety benchmarks calculated (> 30 000 calculations) from
S. van der Mark’s list

® All Oktavian shielding benchmarks (neutrons and gammas)

® Reactivity swing for a LWR using an “Inert Matrix Fuel” (Pu and Mo),
Westinghouse 3 loops type reactor
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© + No MF 32-35 (no 2 Gb files) but every possible cross correlation included

© + No approximation but true probability distribution

© + Only essential info for an evaluation is stored

© + No perturbation code necessary, only “essential” codes

© + Feedback to model parameters

© + (Random) EAF libraries

© + QA
§ - Needs discipline to reproduce

§ - Memory and computer time

§ - Complexity for full reactor core calculation unknown

§ - Role of data centers would change
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X New methodology to propagate nuclear data uncertainty to integral
quantities (keff benchmarks, shielding benchmarks, reactivity swing,
neutron flux for commercial reactor) via Monte Carlo

X Proof of principle with high quality Pb evaluations

X Mass production tested on more than 150 benchmarks
X “Paper to present the principle”: under revision for ANE
� Needs for better sampling in the resonance region

� Needs for a better “accept-reject” mechanism

� What if nuclear modeling does not match the accuracy of the
measurements ? (how to sample ?)

� Needs to develop best central-value evaluations (non-fissile and fissile) ?
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