



D. Rochman

# The new TENDL-2019 nuclear data library





- What is TENDL
- What is new



All slides are available here: <a href="https://tendl.web.psi.ch/bib">https://tendl.web.psi.ch/bib</a> rochman/presentation.html



http://www.psi.ch/stars — 2019.04.25/STARS/RD41 - ( 2 / 10)



### What is the TENDL project?

- <u>TENDL</u>: TALYS evaluated nuclear data library,
- Goal: improve simulations for TENDL and/or other libraries, or solving

$$0 \le \chi^2 \le 1$$

- Available at <a href="https://tendl.web.psi.ch/home.html">https://tendl.web.psi.ch/home.html</a>
- Comes from T6 (software package)
- T6 leads to TENDL, TMC, BMC, HFR...

• See for instance NDS 155 (2019) 1







Available online at www.sciencedirect.com

ScienceDirect

Nuclear Data Sheets 155 (2019) 1-55

Nuclear Data Sheets

www.elsevier.com/locate/nds

TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology

A.J. Koning, <sup>1,2,\*</sup> D. Rochman, <sup>3</sup> J.-Ch. Sublet, <sup>1</sup> N. Dzysiuk, <sup>4,5</sup> M. Fleming, <sup>6,7</sup> and S. van der Marck <sup>4</sup> Nuclear Data Section, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria <sup>2</sup> Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden <sup>3</sup> Laboratory for Reactor Physics Systems Behaviour, Paul Scherrer Institut, Viligen, Switzerland <sup>4</sup>NRG, Westerduinweg 3, 1755 LE Petten, Netherlands

<sup>5</sup> Taras Shevhenko National University of Kyv, Kyiv, Ukraine

<sup>6</sup> Nuclear Energy Agency, OECD, 92100 Boulogne-Billancourt, France

<sup>7</sup> United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB, United Kingdom (Received 3 August 2018; revised received 7 November 2018; accepted 29 November 2018)



http://www.psi.ch/stars

# What is the TENDL project?

- TENDL is in fact a by-product of a series of codes,
- This is one fundamental difference with other libraries (no manual work),
- It allows to perform "TMC" for Total Monte Carlo (uncertainty propagation)
- <u>Methods:</u> reproductibility & completeness, development of a portable system, and making use of the knowledge included in other libraries (JEFF, ENDF/B, JENDL),
- <u>Background:</u> theoretical calculations (TALYS) with experimental inputs, with original resonance evaluations,

#### Impact:

- TENDL-2008 to 2017 (2800 isotopes),
- Neutrons, protons, deuterons, tritons, He3, alpha and gamma induced,
- all isotopes, all cross sections with covariances, 0-200 MeV,
- more than 300 isotopes in the NEA JEFF-3.3 library,
- more than 50 isotopes in the US ENDF/B-VIII.0 library,
- more than 450 publications using TENDL





## What is the TENDL project?







http://www.psi.ch/stars — 2019.04.25/STARS/RD41 - ( 5 / 10)



- To be release at the end of 2019
- Mainly developed between IAEA and PSI
- Beta versions already available (<a href="https://tendl.web.psi.ch/tendl">https://tendl.web.psi.ch/tendl</a> 2019/tendl2019.html)
- Similar structure as the previous TENDL
  - 2813 isotopes, 200 MeV, with covariances
  - Neutrons, protons, deuterons, tritons, He3, alphas, and gammas
- New and simplified T6 available "on demand"
- TALYS-1.95 (above resonances)
- TARES-1.4 (resonances)
- NJOY-2016
- PREPRO-2018
- Other codes/tools
- New "library" database (comparisons, import...)





- New T6:
  - Newest code versions,
  - more verifications,
  - Linux RedHat/Mac,
  - tested with latest compilers
- TENDL-2019 Beta versions already available (<a href="https://tendl.web.psi.ch/tendl">https://tendl.web.psi.ch/tendl</a> 2019/tendl2019.html)
- Similar structure as the previous TENDL libraries
  - 2813 isotopes, 200 MeV, with covariances
  - Neutrons, protons, deuterons, tritons, He3, alphas, and gammas
  - ACF ?
  - ENDF-6 files in different options (MF3 MT5 at 0, 20 or 60 MeV)
  - EAF files
  - MF32 and/or MF33
  - Input files
  - Random files



nttp://www.psi.ch/stars



#### • TALYS-1.95

- Improved photon strength function: Simplified Modified Lorenzian (better) estimated of neutron capture c.s.)
- (Again) solution of the remaining 30 MeV discontinuities (found by KIT and JAEA)
- Improvement of specific nuclides (esp. Ni isotopes)





- TARES-1.4: resonance formatting and analyzing tool
- Measured/compiled/evaluated resonances:
  - Based on latest JENDL-4.0, ENDF/B-VIII.0 and JEFF-3.3
  - Based on the latest Atlas, 6<sup>th</sup> edition (2018)
- Statistical resonances:
  - Based on CALENDF
  - Translating the unresolved range from TALYS into statistically resolved range
  - Consistency between the RRR, URR and fast range
- Covariances in MF32 and MF33
  - Consistency between both format
  - Consistent with the random files (using the ENDSAM from IJS)



- The TENDL library is improving year after year, TENDL-2019 being (hopefully) a better set
- The new T6 code package allows to produce TENDL, random files and to go further,
- Still, as proven by distributing T6, many improvements are necessary
- Good example for the future expert group on "Modern Nuclear Data Evaluation Methods"





2019.04.25/STARS/RD41 - ( 10 / 10)



## Wir schaffen Wissen – heute für morgen

