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H. Sjöstrand⋆ and W. Zwermann♣

⋄NRG, Petten, The Netherlands
♣GRS Garching, Germany

⋆ Uppsala University, Sweden



Contents

ND-2013
D. Rochman – 2 / 11

① 2008: TMC

★ Advantages
★ Drawbacks

② Faster solutions

✩ 2012: fast GRS Method
✩ 2013: fast TMC

③ One example on full core
④ Conclusions

(Monte Carlo vs. Deterministic S/U...)



2008: Total Monte Carlo (TMC)

ND-2013
D. Rochman – 3 / 11

Control of nuclear data (TALYS system)
+ processing (NJOY)

+ system simulation (MCNP/ERANOS/CASMO...)

1000
times

For each random ENDF file, the benchmark calculation is performed with MCNP. At
the end of then calculations,n different keff values are obtained.
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Z many presentations at ND,
Z computer time (not human time),
Z Successfully applied (criticality, shielding, reactor, burn-up...)
Z Most simple path (no additional processing, no covariance required),
Z Other variants: AREVA (NUDUNA), GRS (XSUSA), CIEMAT (ACAB), PSI

(NUSS), CNRS Grenoble..., based on covariance files,
Z Many spin-offs (TENDL covariances, sensitivity, adjustment...)
Z also applicable to fission yields, thermal scattering, pseudo-fission products, all

isotopes (...just everything),
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Z computer time (not human time),
Z Successfully applied (criticality, shielding, reactor, burn-up...)
Z Most simple path (no additional processing, no covariance required),
Z Other variants: AREVA (NUDUNA), GRS (XSUSA), CIEMAT (ACAB), PSI

(NUSS), CNRS Grenoble..., based on covariance files,
Z Many spin-offs (TENDL covariances, sensitivity, adjustment...)
Z also applicable to fission yields, thermal scattering, pseudo-fission products, all

isotopes (...just everything),

But can TMC overtake (at least
compete with) S/U methods ?
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In TMC:

If we can do a calculation once, we can also do
it a 1000 times, each time with a varying data library.
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In TMC:

If we can do a calculation once, we can also do
it a 1000 times, each time with a varying data library.

Well, then uncertainty propagation with TMC takes1000× longer than a single
calculation...
(Each σstatisticsneeds to be small)

There is a solution with Monte Carlo codes:
(in fact 2 solutions)

❅ fast GRS method,
❅ and fast TMC.
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First presented in PHYSOR-2012 by W. Zwermannet al.. It takes advantage of
conditional expectations:

If two output variables k(1) and k(2) are identically distributed and
conditionally independent given the vector of nuclear datainput

then

σnuclear data=
√

cov(k(1),k(2))
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First presented in PHYSOR-2012 by W. Zwermannet al.. It takes advantage of
conditional expectations:

If two output variables k(1) and k(2) are identically distributed and
conditionally independent given the vector of nuclear datainput

then

σnuclear data=
√

cov(k(1),k(2))

In practice:

1. performi = 1..500 MCNP short calculations with random nuclear data and a fixed
seed s1 =⇒ k(1)

eff (i)

2. repeat forj = 1..500, same random nuclear data but fixed seed s2 =⇒ k(2)
eff ( j)

There is no necessity to have smallσstatistics!!
each run can be (very) short



fast GRS method

ND-2013
D. Rochman – 7 / 11

1 × 500 long runs

= 802 pcm
=

√
0.08052 − 0.000672

σnucl.data =
√

σ2
1 − σ2

stat

imf1-1 TMC method
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2×500 ”short” runs∼ 2× ” long” run in time
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If a single calculation takesm histories (σstatsmall enough),
then repeat itn times withm/n histories,
random nuclear data and random seeds.

σ2
total = σ2

statistics+σ2
nuclear datastill holds.
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© as fast as S/U methods (1-2× longer than 1 single calculation),
© tested on criticality & shielding benchmarks, burn-up (keff and inventory),
© Example: the Martin-Hoogenboom benchmark

MCNP model: 241 fuel assemblies, with 264 fuel pins each

=⇒ 357×357×100 regions (1.26×1.26×3.66 cm3): 12.7 million cells

Uncertainty on generated local pin power (tally f7) due to235U, 238U, 239Pu
and H in H2O thermal scattering ineach cell?
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1 normal calculation without nuclear data uncertainty takes n = 2×1011 histories
(σstatistics= 0.25 % at the center,500 weekson 1 cpu)
=⇒ TMC: 500 random runs ofn = 2×1011 histories (500 weeksfor each)
=⇒ fast TMC: 500 random runs ofn/500= 4×108 histories (1 weekfor each)
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(σstatistics= 0.25 % at the center,500 weekson 1 cpu)
=⇒ TMC: 500 random runs ofn = 2×1011 histories (500 weeksfor each)
=⇒ fast TMC: 500 random runs ofn/500= 4×108 histories (1 weekfor each)
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Anyone can do it with the random nuclear data files from www.talys.eu/tendl-2012
(actinides, thermal scattering...)
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Anyone can do it with the random nuclear data files from www.talys.eu/tendl-2012
(actinides, thermal scattering...)

TMC: If we can do a calculation once, we can also do
it a 1000 times, each time with a varying data library.

fast TMC and GRS methods:
If we can do a calculation once, we can also get

nuclear data uncertainties in twice the time
(or less).
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