Uncertainty Propagation
with Fast Monte Carlo Techniques

D. Rochman°, S.C. van der Marck°, A.J. Koning°,
H. Sjöstrand* and W. Zwermann♣

° NRG, Petten, The Netherlands
♣ GRS Garching, Germany
* Uppsala University, Sweden
Contents

1. 2008: TMC
 - Advantages
 - Drawbacks
2. Faster solutions
 - 2012: fast GRS Method
 - 2013: fast TMC
3. One example on full core
4. Conclusions

(Monte Carlo vs. Deterministic S/U...
Control of nuclear data (TALYS system) + processing (NJOY) + system simulation (MCNP/ERANOS/CASMO...)

For each random ENDF file, the benchmark calculation is performed with MCNP. At the end of the \(n \) calculations, \(n \) different \(k_{\text{eff}} \) values are obtained.

\[
\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2
\]
Advantages of the TMC method

- many presentations at ND,
- computer time (not human time),
- Successfully applied (criticality, shielding, reactor, burn-up...)
- Most simple path (no additional processing, no covariance required),
- Other variants: AREVA (NUDUNA), GRS (XSUSA), CIEMAT (ACAB), PSI (NUSS), CNRS Grenoble..., based on covariance files,
- Many spin-offs (TENDL covariances, sensitivity, adjustment...)
- also applicable to fission yields, thermal scattering, pseudo-fission products, all isotopes (...just everything),
Advantages of the TMC method

- many presentations at ND,
- computer time (not human time),
- Successfully applied (criticality, shielding, reactor, burn-up...)
- Most simple path (no additional processing, no covariance required),
- Other variants: AREVA (NUDUNA), GRS (XSUSA), CIEMAT (ACAB), PSI (NUSS), CNRS Grenoble..., based on covariance files,
- Many spin-offs (TENDL covariances, sensitivity, adjustment...)
- also applicable to fission yields, thermal scattering, pseudo-fission products, all isotopes (...just everything),

But can TMC overtake (at least compete with) S/U methods?
Drawbacks of the TMC method

In TMC:

If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.
In TMC:

If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.

Well, then uncertainty propagation with TMC takes $1000 \times$ longer than a single calculation...

(Each $\sigma_{\text{statistics}}$ needs to be small)
Drawbacks of the TMC method

In TMC:

If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.

Well, then uncertainty propagation with TMC takes $1000 \times$ longer than a single calculation...

(Each $\sigma_{\text{statistics}}$ needs to be small)

There is a solution with Monte Carlo codes:

- fast GRS method,
- and fast TMC.
First presented in PHYSOR-2012 by W. Zwermann et al.. It takes advantage of conditional expectations:

If two output variables $k^{(1)}$ and $k^{(2)}$ are identically distributed and conditionally independent given the vector of nuclear data input then

$$\sigma_{\text{nuclear data}} = \sqrt{\text{cov}(k^{(1)}, k^{(2)})}$$
2012: fast GRS method

First presented in PHYSOR-2012 by W. Zwermann et al.. It takes advantage of conditional expectations:

If two output variables $k^{(1)}$ and $k^{(2)}$ are identically distributed and conditionally independent given the vector of nuclear data input then

$$
\sigma_{\text{nuclear data}} = \sqrt{\text{cov}(k^{(1)}, k^{(2)})}
$$

In practice:

1. perform $i = 1..500$ MCNP short calculations with random nuclear data and a fixed seed $s_1 \implies k^{(1)}_{\text{eff}}(i)$

2. repeat for $j = 1..500$, same random nuclear data but fixed seed $s_2 \implies k^{(2)}_{\text{eff}}(j)$

There is no necessity to have small $\sigma_{\text{statistics}}$!! each run can be (very) short
fast GRS method

\[\sigma_{\text{nucl data}} = \sqrt{\text{cov}(\tilde{k}_1, \tilde{k}_2)} = \sqrt{\text{corr}(\tilde{k}_1, \tilde{k}_2) \times \sigma_1 \sigma_2} \]

\[= \sqrt{0.48 \times 0.0110 \times 0.0112} \]

\[= 770 \text{ pcm} \]

\[2 \times 500 \text{ ”short” runs } \sim 2 \times \text{”long” run in time} \]
If a single calculation takes m histories (σ_{stat} small enough), then repeat it n times with m/n histories, random nuclear data and random seeds.

$$\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$$ still holds.
If a single calculation takes \(m \) histories (\(\sigma_{\text{stat}} \) small enough), then repeat it \(n \) times with \(m/n \) histories, random nuclear data and random seeds.

\[
\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2
\]

still holds.

run 0 ENDF/B-VII.1 seed \(s_0 \) \(m \) histories T sec. \(k \pm \sigma_{\text{stat}} \)
If a single calculation takes m histories (σ_{stat} small enough), then repeat it n times with m/n histories, random nuclear data and random seeds.

$$\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$$ still holds.

<table>
<thead>
<tr>
<th>Run</th>
<th>Nuclear Data</th>
<th>Seed</th>
<th>Histories</th>
<th>Time</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ENDF/B-VII.1</td>
<td>s_0</td>
<td>m</td>
<td>T</td>
<td>$k \pm \sigma_{\text{stat}}$</td>
</tr>
<tr>
<td>1</td>
<td>Nuclear Data 1</td>
<td>s_1</td>
<td>m/n hist.</td>
<td>T/n</td>
<td>$k_1 \pm \sigma_1 \sim \sigma_{\text{stat}} \sqrt{n}$</td>
</tr>
</tbody>
</table>
If a single calculation takes m histories (σ_{stat} small enough), then repeat it n times with m/n histories, random nuclear data and random seeds.

$$\sigma^2_{\text{total}} = \sigma^2_{\text{statistics}} + \sigma^2_{\text{nuclear data}} \text{ still holds.}$$

<table>
<thead>
<tr>
<th>Run</th>
<th>ENDF/B-VII.1</th>
<th>Seed</th>
<th>Histories</th>
<th>Time</th>
<th>$k \pm \sigma_{\text{stat}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ENDF/B-VII.1</td>
<td>s_0</td>
<td>m</td>
<td>T</td>
<td>$k \pm \sigma_{\text{stat}}$</td>
</tr>
<tr>
<td>1</td>
<td>Nuclear data 1</td>
<td>s_1</td>
<td>m/n</td>
<td>T/n</td>
<td>$k_1 \pm \sigma_1 \sim \sigma_{\text{stat}} \sqrt{n}$</td>
</tr>
<tr>
<td>2</td>
<td>Nuclear data 2</td>
<td>s_2</td>
<td>m/n</td>
<td>T/n</td>
<td>$k_2 \pm \sigma_2$</td>
</tr>
</tbody>
</table>
If a single calculation takes \(m \) histories (\(\sigma_{\text{stat}} \) small enough), then repeat it \(n \) times with \(m/n \) histories, random nuclear data and random seeds.

\[
\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2
\]

still holds.

run \(0 \)	ENDF/B-VII.1	seed \(s_0 \)	\(m \) histories	T sec.	\(k \pm \sigma_{\text{stat}} \)
run \(1 \)	nuclear data \(1 \)	seed \(s_1 \)	\(m/n \) hist.	T/n sec.	\(k_1 \pm \sigma_1 \sim \sigma_{\text{stat}} \sqrt{n} \)
run \(2 \)	nuclear data \(2 \)	seed \(s_2 \)	\(m/n \) hist.	T/n sec.	\(k_2 \pm \sigma_2 \)
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
run \(n \)	nuclear data \(n \)	seed \(s_n \)	\(m/n \) hist.	T/n sec.	\(k_n \pm \sigma_n \)
If a single calculation takes \(m \) histories (\(\sigma_{\text{stat}} \) small enough), then repeat it \(n \) times with \(m/n \) histories, random nuclear data and random seeds.

\[
\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2
\]

still holds.

<table>
<thead>
<tr>
<th>run</th>
<th>ENDF/B-VII.1</th>
<th>seed (s_0)</th>
<th>(m) histories</th>
<th>T sec.</th>
<th>(k \pm \sigma_{\text{stat}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>run 0</td>
<td>nuclear data 1</td>
<td>seed (s_1)</td>
<td>(m/n) hist.</td>
<td>T/n sec.</td>
<td>(k_1 \pm \sigma_1 \sim \sigma_{\text{stat}} \sqrt{n})</td>
</tr>
<tr>
<td>run 2</td>
<td>nuclear data 2</td>
<td>seed (s_2)</td>
<td>(m/n) hist.</td>
<td>T/n sec.</td>
<td>(k_2 \pm \sigma_2)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>run (n)</td>
<td>nuclear data (n)</td>
<td>seed (s_n)</td>
<td>(m/n) hist.</td>
<td>T/n sec.</td>
<td>(k_n \pm \sigma_n)</td>
</tr>
</tbody>
</table>

n runs

\(\sigma(k) \sim \sigma_{\text{stat}} \) T sec.
If a single calculation takes m histories (σ_{stat} small enough), then repeat it n times with m/n histories, random nuclear data and random seeds.

$$\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$$ still holds.

<table>
<thead>
<tr>
<th>run</th>
<th>ENDF/B-VII.1</th>
<th>seed</th>
<th>m histories</th>
<th>T sec.</th>
<th>$k \pm \sigma_{\text{stat}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>run 0</td>
<td>nuclear data</td>
<td>s$_0$</td>
<td>m</td>
<td>T sec.</td>
<td>$k_1 \pm \sigma_1 \sim \sigma_{\text{stat}}\sqrt{n}$</td>
</tr>
<tr>
<td>run 1</td>
<td>nuclear data</td>
<td>s$_1$</td>
<td>m/n</td>
<td>T/n sec.</td>
<td>$k_2 \pm \sigma_2$</td>
</tr>
<tr>
<td>run 2</td>
<td>nuclear data</td>
<td>s$_2$</td>
<td>m/n</td>
<td>T/n sec.</td>
<td>$k_2 \pm \sigma_2$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>run n</td>
<td>nuclear data</td>
<td>s$_n$</td>
<td>m/n</td>
<td>T/n sec.</td>
<td>$k_n \pm \sigma_n$</td>
</tr>
<tr>
<td>n runs</td>
<td></td>
<td></td>
<td>m/n</td>
<td>T sec.</td>
<td>$\sigma(k) \sim \sigma_{\text{stat}}$</td>
</tr>
</tbody>
</table>

$$\sigma_{\text{total}}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (k_i - \bar{k})^2$$
If a single calculation takes \(m \) histories (\(\sigma_{\text{stat}} \) small enough), then repeat it \(n \) times with \(m/n \) histories, random nuclear data and random seeds.

\[
\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2 \quad \text{still holds.}
\]

<table>
<thead>
<tr>
<th>run 0</th>
<th>ENDF/B-VII.1</th>
<th>seed (s_0)</th>
<th>(m) histories</th>
<th>T sec.</th>
<th>(k \pm \sigma_{\text{stat}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>run 1</td>
<td>nuclear data 1</td>
<td>seed (s_1)</td>
<td>(m/n) hist.</td>
<td>T/n sec.</td>
<td>(k_1 \pm \sigma_1 \sim \sigma_{\text{stat}} \sqrt{n})</td>
</tr>
<tr>
<td>run 2</td>
<td>nuclear data 2</td>
<td>seed (s_2)</td>
<td>(m/n) hist.</td>
<td>T/n sec.</td>
<td>(k_2 \pm \sigma_2)</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>run (n)</td>
<td>nuclear data (n)</td>
<td>seed (s_n)</td>
<td>(m/n) hist.</td>
<td>T/n sec.</td>
<td>(k_n \pm \sigma_n)</td>
</tr>
<tr>
<td>(n) runs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\sigma(k) \sim \sigma_{\text{stat}})</td>
</tr>
</tbody>
</table>

\[
\left\{ \begin{array}{l}
\sigma_{\text{total}}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (k_i - \bar{k})^2 \\
\sigma_{\text{statistics}}^2 = \frac{1}{n} \sum_{i=1}^{n} \sigma_i^2
\end{array} \right.
\]
The fast methods

- as fast as S/U methods (1-2 × longer than 1 single calculation),
- tested on criticality & shielding benchmarks, burn-up (\(k_{\text{eff}}\) and inventory),
The fast methods

- as fast as S/U methods (1-2 \times longer than 1 single calculation),
- tested on criticality & shielding benchmarks, burn-up (k_{eff} and inventory),
- Example: the Martin-Hoogenboom benchmark

MCNP model: 241 fuel assemblies, with 264 fuel pins each

\[357 \times 357 \times 100 \text{ regions (1.26 \times 1.26 \times 3.66 cm}^3) : 12.7 \text{ million cells} \]
The fast methods

- as fast as S/U methods (1-2 × longer than 1 single calculation),
- tested on criticality & shielding benchmarks, burn-up (\(k_{\text{eff}}\) and inventory),
- Example: the Martin-Hoogenboom benchmark

MCNP model: 241 fuel assemblies, with 264 fuel pins each

\[
\Rightarrow 357 \times 357 \times 100 \text{ regions } (1.26 \times 1.26 \times 3.66 \text{ cm}^3): 12.7 \text{ million cells}
\]

Uncertainty on generated local pin power (tally f7) due to \(^{235}\text{U}, \(^{238}\text{U}, \(^{239}\text{Pu}\) and \(\text{H}\) in \(\text{H}_2\text{O}\) thermal scattering in each cell?
Fast TMC method

1 normal calculation without nuclear data uncertainty takes \(n = 2 \times 10^{11} \) histories
\((\sigma_{\text{statistics}} = 0.25 \% \text{ at the center, 500 weeks on 1 cpu}) \)

\(\Rightarrow \) TMC: 500 random runs of \(n = 2 \times 10^{11} \) histories (500 weeks for each)

\(\Rightarrow \) fast TMC: 500 random runs of \(n/500 = 4 \times 10^8 \) histories (1 week for each)
Fast TMC method

1 normal calculation without nuclear data uncertainty takes \(n = 2 \times 10^{11} \) histories
(\(\sigma_{\text{statistics}} = 0.25 \% \) at the center, 500 weeks on 1 cpu)

\[\Rightarrow \text{TMC: 500 random runs of } n = 2 \times 10^{11} \text{ histories (500 weeks for each)} \]

\[\Rightarrow \text{fast TMC: 500 random runs of } n/500 = 4 \times 10^8 \text{ histories (1 week for each)} \]
Conclusions

Anyone can do it with the random nuclear data files from www.talys.eu/tendl-2012 (actinides, thermal scattering...)

Conclusions

Anyone can do it with the random nuclear data files from www.talys.eu/tendl-2012 (actinides, thermal scattering...)

TMC: If we can do a calculation once, we can also do it a **1000** times, each time with a varying data library.
Conclusions

Anyone can do it with the random nuclear data files from www.talys.eu/tendl-2012 (actinides, thermal scattering...)

fast TMC and GRS methods:

If we can do a calculation once, we can also get nuclear data uncertainties in twice the time (or less).