

Uncertainty Propagation

with Fast Monte Carlo Techniques

D. Rochman⁶, S.C. van der Marck⁶, A.J. Koning⁶,

H. Sjöstrand* and W. Zwermann*

NRG, Petten, The Netherlands
GRS Garching, Germany
* Uppsala University, Sweden

Contents

- ① 2008: TMC
 - ★ Advantages★ Drawbacks
- 2 Faster solutions
 - $\begin{array}{ccc} \overleftrightarrow{} & 2012: \text{ fast GRS Method} \\ \overleftrightarrow{} & 2013: \text{ fast TMC} \end{array}$
- ③ One example on full core
- **④** Conclusions

(Monte Carlo vs. Deterministic S/U...)

For each random ENDF file, the benchmark calculation is performed with MCNP. At the end of the *n* calculations, *n* different k_{eff} values are obtained.

 $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$

Advantages of the TMC method

∎ many presentations at ND,

- IS computer time (not human time),
- Successfully applied (criticality, shielding, reactor, burn-up...)
- Most simple path (no additional processing, no covariance required),
- Other variants: AREVA (NUDUNA), GRS (XSUSA), CIEMAT (ACAB), PSI (NUSS), CNRS Grenoble..., based on covariance files,
- Many spin-offs (TENDL covariances, sensitivity, adjustment...)
- also applicable to fission yields, thermal scattering, pseudo-fission products, all isotopes (...just everything),

Advantages of the TMC method

- \square many presentations at ND,
- \square computer time (not human time),
- Successfully applied (criticality, shielding, reactor, burn-up...)
- Most simple path (no additional processing, no covariance required),
- Other variants: AREVA (NUDUNA), GRS (XSUSA), CIEMAT (ACAB), PSI (NUSS), CNRS Grenoble..., based on covariance files,
- Many spin-offs (TENDL covariances, sensitivity, adjustment...)
- also applicable to fission yields, thermal scattering, pseudo-fission products, all isotopes (...just everything),

But can TMC overtake (at least compete with) S/U methods ?

ND-2013

In TMC:

If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.

In TMC:

If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.

Well, then uncertainty propagation with TMC takes 1000×1000 longer than a single calculation...

(*Each* $\sigma_{\text{statistics}}$ *needs to be small*)

In TMC:

If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.

Well, then uncertainty propagation with TMC takes 1000×1000 longer than a single calculation...

(Each $\sigma_{\text{statistics}}$ needs to be small)

There is a solution with Monte Carlo codes: (in fact 2 solutions)

✗ fast GRS method,✗ and fast TMC.

2012: fast GRS method

ND-2013

NRG

First presented in PHYSOR-2012 by W. Zwermann *et al*.. It takes advantage of conditional expectations:

If two output variables $k^{(1)}$ and $k^{(2)}$ are identically distributed and conditionally independent given the vector of nuclear data input then

 $\sigma_{\text{nuclear data}} = \sqrt{\text{cov}(\mathbf{k}^{(1)}, \mathbf{k}^{(2)})}$

2012: fast GRS method

First presented in PHYSOR-2012 by W. Zwermann *et al*.. It takes advantage of conditional expectations:

If two output variables $k^{(1)}$ and $k^{(2)}$ are identically distributed and conditionally independent given the vector of nuclear data input then

 $\sigma_{\text{nuclear data}} = \sqrt{\text{cov}(\mathbf{k}^{(1)}, \mathbf{k}^{(2)})}$

In practice:

ND-2013

- 1. perform i = 1..500 MCNP short calculations with random nuclear data and a fixed seed $s_1 \Longrightarrow k_{eff}^{(1)}(i)$
- 2. repeat for j = 1..500, same random nuclear data but fixed seed $s_2 \implies k_{eff}^{(2)}(j)$

There is no necessity to have small $\sigma_{statistics}$!! each run can be (very) short

fast GRS method

ND-2013

 2×500 "short" runs ~ $2 \times$ "long" run in time

ND-2013

If a single calculation takes *m* histories (σ_{stat} small enough), then repeat it *n* times with *m/n* histories, random nuclear data and random seeds.

 $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds.

2013: fast TMC method... If a single calculation takes *m* histories (σ_{stat} small enough), then repeat it *n* times with *m/n* histories, random nuclear data and random seeds. $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds. run 0 ENDF/B-VII.1 seed s₀ *m* histories T sec. $k \pm \sigma_{\text{stat}}$

2013: fast TMC method... If a single calculation takes *m* histories (σ_{stat} small enough), then repeat it *n* times with *m/n* histories, random nuclear data and random seeds. $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds. <u>run 0 ENDF/B-VII.1 seed s₀ *m* histories T sec. $k \pm \sigma_{\text{stat}}$ run 1 nuclear data 1 seed s₁ *m/n* hist. T/n sec. $k_1 \pm \sigma_1 \sim \sigma_{\text{stat}} \sqrt{n}$ </u>

2013: fast TMC method								
If a single calculation takes <i>m</i> histories (σ_{stat} small enough), then repeat it <i>n</i> times with <i>m/n</i> histories, random nuclear data and random seeds. $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds.								
run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k \pm \sigma_{stat}$			
run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{stat} \sqrt{n}$			
run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2 \pm \sigma_2$			

If a single calculation takes <i>m</i> histories (σ_{stat} small enough), then repeat it <i>n</i> times with <i>m/n</i> histories, random nuclear data and random seeds. $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds.							
run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k \pm \sigma_{stat}$		
run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{stat} \sqrt{n}$		
run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2 \pm \sigma_2$		
•		•			• • •		
run n	nuclear data <i>n</i>	seed s_n	m/n hist.	T/n sec.	$\mathbf{k}_n \pm \mathbf{\sigma}_n$		

If a single calculation takes <i>m</i> histories (σ_{stat} small enough), then repeat it <i>n</i> times with <i>m/n</i> histories, random nuclear data and random seeds. $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds.							
run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k \pm \sigma_{stat}$		
run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{\text{stat}} \sqrt{n}$		
run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2\pm \sigma_2$		
• •		•			• •		
run <i>n</i>	nuclear data <i>n</i>	seed s_n	m/n hist.	T/n sec.	$\mathbf{k}_n \pm \mathbf{\sigma}_n$		
n runs		$\sigma(\overline{k})$	$) \sim \sigma_{stat}$	T sec.			

	If a	single calcula then reprint the random $\sigma_{total}^2 =$	ation tal peat it <i>n</i> n nuclea $\sigma^2_{\text{statistic}}$	$\frac{1}{2} \cos \frac{m}{m} \text{ histor} \\ \text{times with} \\ \frac{1}{2} \cos \frac{1}{m} \cos \frac{1}{m}$	ories (σ _{st} h <u>m/n</u> hi random r data still	at small enough), stories, seeds. holds.
	run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k \pm \sigma_{stat}$
•	run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{stat} \sqrt{n}$
	run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2 \pm \sigma_2$
	• •		•			• • •
	run <i>n</i>	nuclear data <i>n</i>	seed s_n	m/n hist.	T/n sec.	$\mathbf{k}_n \pm \mathbf{\sigma}_n$
	n runs		$\left\{ \begin{array}{c} \sigma(\overline{k}) \\ \sigma_{total}^2 \end{array} \right.$	$) \sim \sigma_{\text{stat}}$ = $\frac{1}{n-1} \sum_{i=1}^{n}$	T sec. $\int_{1}^{2} \left(k_{i} - \overline{k} \right)^{2}$	
NI	0-2013					D. Rochman – 8 / 11

ND-2013

If a single calculation takes <i>m</i> histories (σ_{stat} small enough), then repeat it <i>n</i> times with <i>m/n</i> histories, random nuclear data and random seeds. $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds.							
run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k\pm\sigma_{stat}$		
run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{\text{stat}} \sqrt{n}$		
run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2 \pm \sigma_2$		
•					•		
run n	nuclear data <i>n</i>	seed s_n	m/n hist.	T/n sec.	$\mathbf{k}_n \pm \mathbf{\sigma}_n$		
n runs		$ \begin{cases} \sigma^2_{total} \\ \sigma^2_{statistic} \end{cases} $	$= \frac{1}{n-1} \sum_{i=1}^{n} \sum_{i=1}^{n} \mathbf{c}$	T sec. $\int_{1}^{2} (k_i - \overline{k})^2 \checkmark$			

D. Rochman – 8 / 11

The fast methods

- \odot as fast as S/U methods (1-2 × longer than 1 single calculation),
- \odot tested on criticality & shielding benchmarks, burn-up (k_{eff} and inventory),

The fast methods

ND-2013

- \odot as fast as S/U methods (1-2 × longer than 1 single calculation),
- \odot tested on criticality & shielding benchmarks, burn-up (k_{eff} and inventory),
- © Example: the Martin-Hoogenboom benchmark

MCNP model: 241 fuel assemblies, with 264 fuel pins each

 \implies 357 × 357 × 100 regions (1.26 × 1.26 × 3.66 cm³): 12.7 million cells

The fast methods

ND-2013

- \odot as fast as S/U methods (1-2 × longer than 1 single calculation),
- \odot tested on criticality & shielding benchmarks, burn-up (k_{eff} and inventory),
- Example: the Martin-Hoogenboom benchmark

MCNP model: 241 fuel assemblies, with 264 fuel pins each

 $\implies 357 \times 357 \times 100 \text{ regions } (1.26 \times 1.26 \times 3.66 \text{ cm}^3): 12.7 \text{ million cells}$ Uncertainty on generated local pin power (tally f7) due to ²³⁵U, ²³⁸U, ²³⁹Pu and H in H₂O thermal scattering in each cell ?

Fast TMC method

ND-2013

1 normal calculation without nuclear data uncertainty takes $n = 2 \times 10^{11}$ histories ($\sigma_{\text{statistics}} = 0.25$ % at the center, 500 weeks on 1 cpu)

 \implies TMC: 500 random runs of $n = 2 \times 10^{11}$ histories (500 weeks for each)

 \implies fast TMC: 500 random runs of $n/500 = 4 \times 10^8$ histories (1 week for each)

Fast TMC method

1 normal calculation without nuclear data uncertainty takes $n = 2 \times 10^{11}$ histories $(\sigma_{\text{statistics}} = 0.25 \% \text{ at the center, 500 weeks on 1 cpu})$ \implies TMC: 500 random runs of $n = 2 \times 10^{11}$ histories (500 weeks for each) \implies fast TMC: 500 random runs of $n/500 = 4 \times 10^8$ histories (1 week for each)

Conclusions

ND-2013

NRG Anyone can do it with the random nuclear data files from www.talys.eu/tendl-2012 (actinides, thermal scattering...)

Conclusions

ND-2013

Anyone can do it with the random nuclear data files from <u>www.talys.eu/tendl-2012</u> (actinides, thermal scattering...)

TMC: If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.

Conclusions

Anyone can do it with the random nuclear data files from <u>www.talys.eu/tendl-2012</u> (actinides, thermal scattering...)

fast TMC and GRS methods: If we can do a calculation once, we can also get nuclear data uncertainties in twice the time (or less).

