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2008: Total Monte Carlo (TMC) \

Control of nuclear data (TALYS system)
+ processing (NJOY)
+ system simulation (MCNP/ERANOS/CASMO..))

For each random ENDF file, the benchmark calculation is peréa with MCNP. At
the end of than calculationsn different k. values are obtained.
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Advantages of the TMC method \

N3G

= Mmany presentations at ND,

i computer time (not human time),

ww Successfully applied (criticality, shielding, reactauri-up...)

= Most simple path (no additional processing, no covariargeired),

w2 Other variants: AREVA (NUDUNA), GRS (XSUSA), CIEMAT (ACABPSI
(NUSS), CNRS Grenoble..., based on covariance files,

«w Many spin-offs (TENDL covariances, sensitivity, adjustie)

= also applicable to fission yields, thermal scattering, gediission products, all
Isotopes (.just everything,
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«w Many spin-offs (TENDL covariances, sensitivity, adjustie)

= also applicable to fission yields, thermal scattering, gediission products, all
Isotopes (.just everything,

But can TMC overtake (at least
compete with) S/U methods ?
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Drawbacks of the TMC method \

6 In TMC:

| we can do a calculation once, we can also do
It a 1000 times, each time with a varying data library.
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Drawbacks of the TMC method \

4 In TMC:

~If we can do a calculation once, we can also do
It a 1000 times, each time with a varying data library.

Well, then uncertainty propagation with TMC take300x longer than a single
calculation...
(Each Ogtatisticsneeds to be small)

There Is a solution with Monte Carlo codes:
(in fact 2 solutions)

[1 fast GRS method,
[1 and fast TMC.
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2012: fast GRS method AN

First presented in PHYSOR-2012 by W. Zwermaahal.. It takes advantage ON \
conditional expectations:

" If two output variables ) and K2 are identically distributed an
conditionally independent given the vector of nuclear aapait
then

Onuclear data— \/COV(k(l), k(z))
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2012: fast GRS method AN

First presented in PHYSOR-2012 by W. Zwermaahal.. It takes advantage ON \
conditional expectations:

" If two output variables ) and K2 are identically distributed an
conditionally independent given the vector of nuclear aapait
then

Onuclear data— \/COV(k(l), k(z))

In practice:

1. performi = 1..500 MCNP short calculations with random nuclear data andeal fix
seed s — k(e?(i)
2. repeatforj = 1..500, same random nuclear data but fixed seeg-s k(z)(j)

e

There is no necessity to have sm@a|asistics!!
each run can be (very) short
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fast GRS method
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2013: fast TMC method...

\
NRG
" If a single calculation takes histories fsiarsmall enough))

then repeat ibh times withm/n histories,

random nuclear data and random seeds.

2 2 2 :
Gtotal o cystatistics_|_ cynuclear data?tIII holds.
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2013: fast TMC method...

\
NRG
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2013: fast TMC method...
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The fast methods AN

N3G

© as fast as S/U methods (1x2longer than 1 single calculation),
© tested on criticality & shielding benchmarks, burn-upg(&nd inventory),
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MCNP model: 241 fuel assemblies, with 264 fuel pins each
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N3G

© as fast as S/U methods (1x2longer than 1 single calculation),
© tested on criticality & shielding benchmarks, burn-upg(nd inventory),
© Example: the Martin-Hoogenboom benchmark

MCNP model: 241 fuel assemblies, with 264 fuel pins each
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— 357x 357x 100 regions (26 x 1.26 x 3.66 cnt): 12.7 million cells

Uncertainty on generated local pin power (tally f7) dué¥J, 238U, %°°Pu
and H in O thermal scattering irach cell?
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Fast TMC method AN

G

1 normal calculation without nuclear data uncertainty sake: 2 x 10t historie!\I
(Ostatisiics= 0.25 % at the centeE00 weekn 1 cpu)

— TMC: 500 random runs afi = 2 x 10" histories 600 weekdor each)

— fast TMC: 500 random runs @f/500= 4 x 10° histories (. weekfor each)
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Fast TMC method

N3G
1 normal calculation without nuclear data uncertainty sake: 2 x 10** histories \
(Ostatisiics= 0.25 % at the centeE00 weekn 1 cpu)

— TMC: 500 random runs afi = 2 x 10" histories 600 weekdor each)

— fast TMC: 500 random runs @f/500= 4 x 10° histories (. weekfor each)
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Conclusions \

Anyone can do it with the random nuclear data files from wvuyst&u/tendI-Z(!?!\
(actinides, thermal scattering...)

D. Rochman—-11/11



Conclusions \

Anyone can do it with the random nuclear data files from wvuyst&u/tendl-Z(!?!\
(actinides, thermal scattering...)

g TMC: If we can do a calculation once, we can also do
It a 1000 times, each time with a varying data library.

D. Rochman—-11/11



Conclusions \

Anyone can do it with the random nuclear data files from wvuyst&u/tendI-Z(!?!\
(actinides, thermal scattering...)

/ fast TMC and GRS methods:
If we can do a cal culation once, we can also get
nuclear data uncertainties in twice the time

N
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