PAUL SCHERRER INSTITUT

D. Rochman et al.

How TENDL and TALYS can benefit from n_TOF ?

N_TOF collaboration board, Geneva, Switzerland, April 6, 2017

- What is TENDL?
- Resonance range,
- How n_TOF data can be implemented,
- Conclusion

- *D*. Rochman^{1,*}, *A.J.* Koning^{2,3}, *J.Ch.* Sublet⁴, *M.* Fleming⁴, *E.* Bauge⁵, *S.* Hilaire⁵, *P.* Romain⁵, *B.* Morillon⁵, *H.* Duarte⁵, *S.* Goriely⁶, *S.C.* van der Marck⁷, *H.* Sjöstrand³, *S.* Pomp³, *N.* Dzysiuk⁷, *O.* Cabellos⁸, *H.* Ferroukhi¹, and *A.* Vassiliev¹
- ¹Reactor Physics and Systems Behaviour Laboratory, Paul Scherrer Institut, Switzerland
- ²Nuclear Data Section, International Atomic Energy Agency, Vienna, Austria
- ³Uppsala University, Uppsala, Sweden
- ⁴ United Kingdom Atomic Energy Authority, Abingdon, United Kingdom
- ⁵CEA DAM DIF, Service de Physique Nucléaire, France
- ⁶ Université Libre de Bruxelles, 1050 Brussels, Belgium
- ⁷NRG, Petten, the Netherlands
- ⁸OECD Nuclear Energy Agency, Paris, France

By A.J. Koning¹, <u>D. Rochman</u>², J. Kopecky³, J.Ch. Sublet⁴, M. Fleming⁴, E. Bauge⁷, S. Hilaire⁷, P. Romain⁷, B. Morillon⁷, H. Duarte⁷, S.C van der Marck⁶, <u>S. Pomp</u>⁵, <u>H. Sjostrand</u>⁵, <u>R. Forrest</u>¹, H. Henriksson⁸, O. Cabellos⁹, S. Goriely¹⁰, J. Leppanen¹¹, H. Leeb¹², A. Plompen¹³, and R. Mills¹⁴

¹ IAEA, ² PSI,³ JUKO Research, ⁴CCFE, ⁵Uppsala Univ., ⁶NRG, ⁷CEA,⁸Vattenfall, ⁹NEA, ¹⁰ULB, ¹¹VTT, ¹²ATI, ¹³IRMM, ¹⁴NNL.

TENDL nuclear data library: overview 1

- TENDL is in fact a by-product of a series of codes,
- This is one fundamental difference with other libraries (no manual work),
- It allows to perform "TMC" for Total Monte Carlo (uncertainty propagation)
- <u>Goal</u>: improve simulations (C/E) for any application,

$$\chi^2 = 0 \ or \ 1$$

- Methods: reproductibility & completeness, development of a portable system
- <u>Background:</u> theoretical calculations (TALYS) with experimental inputs, with original resonance evaluations,
- Impact:
 - TENDL-2008 to 2015 (2800 isotopes),
 - Neutrons, protons, deuterons, tritons, He3, alpha and gamma induced,
 - all isotopes, all cross sections with covariances, 0-200 MeV,
 - more than 300 isotopes in the NEA JEFF-3.3,
 - more than 450 publications using TENDL

$$\chi^2 = \frac{1}{n} \sum_{i=1}^n \left(\frac{C_i - E_i}{\Delta E_i}\right)^2$$

TENDL nuclear data library: overview 2

- Fully implemented in FISPACT-II, part of GEANT, commercial codes...,
- Used in fission, fusion applications, medical isotope productions

http://www.psi.ch/stars

- In TENDL, all 2800 isotopes have unique resonances
 - Only about 10 % of the resonances are measured,
 - The rest comes from the HFR method (statistical resonances),

- Presented in <u>ANE 50 (2013) 60</u>
 - Combine the 3 previous models (ld, omp and γ-str) to produce statistical resonances
- Uses the following scheme:
 - TALYS (input: Id + omp + γ -str)
 - CALENDF (input: TALYS output)
 - Output: statistical resonances

TENDL related projects

HFR: When no measured resonances: consistency from 0 to 200 MeV

- A single OMP,
- A single γ-strength function,
- A single level density model,

- All using SAMMY retro-active method,
- All with MF-33 from 0 to 200 MeV,

TENDL: example in MACS calculations

- Presented in PL/B 764 (2017) 109,
- Systematic approach to the neutron drip line
- Show the impact of the traditional method (Hauser feshbach) compared to

- We perform SAMMY analysis of the data,
- We can include the measured resonance parameters in TENDL, (n_TOF data used in TENDL and other libraries/codes as JEFF=TENDL for some isotopes)
- From high energy measurements (keV to MeV), model parameters can be extracted (level densities, gamma-strength function or optical model) with TALYS,
- Existing TENDL resonances can be fitted to n_TOF MACS,
- Needs of data, for applied and less-applied research,
- We can provide training on nuclear data evaluation, which will go into TENDL.

- n_TOF data are welcome in TENDL (resonance parameters, integral quantities),
- Because TENDL is used in many different applications, so will be the n_TOF data.
- The TENDL project can help student to perform full-size evaluations.

Wir schaffen Wissen – heute für morgen

