Inelastic Neutron Scattering on Si from 4 to 20 MeV at FIGARO

D. Rochman, R. C. Haight, J. M. O'Donnell and M. Devlin
LANSE-3, Los Alamos National Laboratory, NM 87545, USA
rochman@lanl.gov, haight@lanl.gov, odenel@lanl.gov, devlin@lanl.gov

Abstract - The energy spectrum of the outgoing neutrons from the reaction \(^{28}\text{Si}(n,n')^{28}\text{Si} \) is studied as a function of incident neutron energy, using the white neutron beam of the WNR facility at the Los Alamos Neutron Science Center (LANSCE) and the FIGARO facility. To signal an inelastic scattering event, \(\gamma \)-rays of \(E_{\gamma} = 1.78 \text{ MeV} \), characteristic of the transition in \(^{28}\text{Si} \) between the first-excited and ground states, are detected by a high-resolution Ge or one barium-fluoride detector. The emitted neutrons are detected by a liquid scintillator (EJ301) at about 1 meter from the sample so that the time of flight of the emitted neutron can be measured and its energy deduced. The excitation function of the emission spectrum for incident neutron energies \(E_n = 4 \) to 20 MeV is then obtained and compared with the predictions of the nuclear model calculations performed with the codes QNASH and EMPIRE II. Furthermore, a comparison is made with the calculations and with experimental data from the literature.

1. INTRODUCTION

Understanding nuclear reactions and nuclear structure is key to reliable calculations regarding nuclear weapons, transmutation of radioactive waste from power reactors, neutron transport, radiation effects and synthesis of the elements in stars. Nucleon inelastic scattering is potentially a very powerful probe of nuclear structure and gives access to the transition probabilities between the nuclear ground state and the excited states. In this goal, the new Fast Neutron-Induced Gamma-Ray Observer (FIGARO) was constructed on a flight path at the Weapons Research Facility (WNR) to measure \(\gamma \)-ray and neutron emission spectra following neutron-induced reactions.

In natural silicon, \(^{28}\text{Si} \) has an abundance of 92.2 \%, and thus is a simple target for a first experimental study and for testing model calculations. Silicon is also of great applied interest in the semiconductor industry and in detectors for physics experiments. Neutron-induced reactions, the measurement of the cross section of \((n,n'), (n,n'p), (n,n'\gamma) \) reactions, the measurement of the inelastic scattering event, \(\gamma \)-rays or \(\beta \)-rays or \(\alpha \) rays have been known for many years to be responsible for producing errors in semiconductor memories. Several measurement have been performed on \(^{28}\text{Si} \) samples for neutron inelastic scattering \(^{28}\text{Si}(n,n')^{28}\text{Si} \) with mono-energetic neutrons at several incident neutron energies but not over the complete range from threshold to 20 MeV. Three studies on \(^{28}\text{Si} \) present some results about the excitation function. Ref. 9 presents the spectra of neutrons scattered inelastically to the first excited state with the excitation function at 60° for an incident neutron energy from 2 to 6 MeV, Ref. 10 presents an excitation function to the 2\(^{+}\) state of the integrated inelastic cross section for several incident neutron energies from 6.8 to 14.8 MeV and Ref. 11 presents the excitation function of the emission spectrum for an incident neutron energy of 14.1 MeV.

In general neutron-induced reactions, the residual nucleus is in a highly excited state which subsequently decays via a \(\gamma \) cascade to the ground state or via neutron or light-charged particle emission. Direct transitions to the ground state are unlikely because of the many other decay modes possible. For even-even nuclei, because there is sufficient angular momentum in the system to populate a rather wide range of residual states, few of these states, except the lowest 2\(^{+}\) state, decay directly to the ground state and nearly all decay through this 2\(^{+}\) state, see Fig. 1.

The experiments were performed at the 30° right flight path of the WNR facility. The general features of the 30° right flight path setup are described in Ref. 12. A diagram of the flight path, collimation, shielding, sample position and detector locations, is shown in Fig. 2.

FIG. 3: \(\gamma \)-ray spectrum from the Ge detector for the decay of \(^{28}\text{Si} \). The line at 1.78 MeV arises from decays of the first excited state in \(^{28}\text{Si} \).

FIG. 4: Time of flight for the neutron \(n' \) between the target and a sample neutron detector. The narrow peak for the neutron \(n' \) is present.

FIG. 5: Time of flight for the neutron \(n' \) between the target and a sample neutron detector. The narrow peak for the neutron \(n' \) is present.

FIG. 5: Time of flight for the neutron \(n' \) between the target and a sample neutron detector. The narrow peak for the neutron \(n' \) is present.

In general neutron-induced reactions, the residual nucleus is in a highly excited state which subsequently decays via a \(\gamma \) cascade to the ground state or via neutron or light-charged particle emission. Direct transitions to the ground state are unlikely because of the many other decay modes possible. For even-even nuclei, because there is sufficient angular momentum in the system to populate a rather wide range of residual states, few of these states, except the lowest 2\(^{+}\) state, decay directly to the ground state and nearly all decay through this 2\(^{+}\) state, see Fig. 1.

Thus, for incident neutron energies lower than the effective threshold for the \((n,2n) \) \(Q = -17.18 \text{ MeV} \), \((n,n'p) \) \(Q = -11.58 \text{ MeV} \) or \((n,n'\gamma) \) \(Q = -9.98 \text{ MeV} \) reactions, the measurement of the cross section of \(^{28}\text{Si}(n,n')^{28}\text{Si} \) in coincidence with the 1.78 MeV transition from the 2\(^{+}\) excited state to the ground state is approximately equal to the measurement of the inelastic cross section.

FIGARO is a flexible facility at WNR for the study of neutron-induced reactions that result in the emission of \(\gamma \)-rays and neutrons. It is designed for high-resolution \(\gamma \)-ray detection from neutron-induced interactions with selected target nuclei, with the possibility of detecting neutrons emitted in the reaction over a continuous wide range of incident neutron energies from 1 MeV to more than 100 MeV.

II. EXPERIMENTAL PROCEDURE

I.A. Set-up

The experiments were performed at the 30° right flight path of the WNR facility. The general features of the 30° right flight path setup are described in Ref. 12. A diagram of the flight path, collimation, shielding, sample position and detector locations, is shown in Fig. 2.

The silicon target was irradiated at a distance of 21 meters from the neutron production target. The cylindrical sample was 5 cm high and 2 cm in diameter. The experimental approach was as follows: A pulse of neutrons having a wide energy spectrum is produced in the Target-4 spallation neutron source at WNR by the interaction of the 800 MeV proton beam from the LANSCE accelerator with a tungsten target. The neutrons, collimated to a beam of 1 or 2 cm in diameter, impinge on the natural Si sample, where nuclear excitations take place. The excited nuclei decay by the emission of \(\gamma \)-rays and neutrons \(n' \). The \(\gamma \)-rays are detected by one high-resolution Ge or one barium-fluoride detector (see Fig. 3). The emitted neutrons \(n' \) are detected in an array of six liquid scintillators (EJ301) at about 1 meter from the sample so that the time of flight of emitted neutron can be measured and its energy deduced.

The TOF of the incident neutron gives the energy \(E_n \), at which the reaction is initiated. In the case of \(^{28}\text{Si} \), the neutron \(n' \) signal is recorded in coincidence with the first excited level at 1.78 MeV. Then, using a pulse-shape discrimination (PSD) technique on the liquid scintillator signals, it is possible to separate the \(\gamma \)-ray pulses from the neutron pulses, see Fig. 5. For PSD, two gates (long and short) are used on the time pulse from the liquid scintillators. As the fraction of light appearing in the slow component depends on the nature of the incident particle, the signals integrated with a short gate and a large gate are plotted with the short gate on the \(Y \)-axis and the long gate on the \(X \)-axis. The signals induced by the \(\gamma \)-rays and neutrons are then separated. The number of neutron-induced pulses are then divided by the number of target nuclei, with the possibility of detecting neutrons emitted in the reaction over a continuous wide range of incident neutron energies from 1 MeV to more than 100 MeV.

FIG. 1: Excitation function of the emission spectrum for incident neutron energies \(E_n = 4 \) to 20 MeV.

FIG. 2: Time of flight for the neutron \(n' \) between the target and a sample neutron detector. The narrow peak for the neutron \(n' \) is present.

FIG. 3: \(\gamma \)-ray spectrum from the Ge detector for the decay of \(^{28}\text{Si} \). The line at 1.78 MeV arises from decays of the first excited state in \(^{28}\text{Si} \).

FIG. 4: Time of flight for the neutron \(n' \) between the target and a sample neutron detector. The narrow peak for the neutron \(n' \) is present.

FIG. 5: Time of flight for the neutron \(n' \) between the target and a sample neutron detector. The narrow peak for the neutron \(n' \) is present.
The Si data to obtain beam-independent data. The deduced spectrum is presented in Fig. 6. This spectrum is then used to normalize the Si data to obtain beam-independent data.

The second data normalization is a function of the neutron beam intensity. The neutron beam was monitored as a standard.

The TOF between the neutron production target and the fission chamber is used to calculate the incident neutron energy. The momentum of the detected gamma-ray is not included in the kinematics.

Furthermore, in order to correct for the background at all incident neutron energies, several measurements were done without the sample, with the neutron beam on. This background, suitably normalized, was subtracted from the 252Cf sample measurements. By subtraction of the ground state energy from the total energy, the excitation energy E_x is calculated with available data is shown in Fig. 7.

In order to extract data proportional to the cross section from the E_x, one-dimensional energy spectra were generated by summing TOF bins corresponding to a “slice” in neutron energy, and projecting onto the excitation energy axis (Y-axis). Then, the excitation energy distribution for a given incident neutron energy is compared with the GNASH and EMPIRE-II calculations.

In the experiment, six neutron detectors, containing EJ301 liquid scintillator (2 inches thick, 5 inches in diameter of active scintillator), similar to NE213, were used. The neutron efficiency was measured using the fission neutrons from a spontaneous fission source of 252Cf. The detector was monitored as a standard.

In the experiment, six neutron detectors, containing EJ301 liquid scintillator (2 inches thick, 5 inches in diameter of active scintillator), similar to NE213, were used. The neutron efficiency was measured using the fission neutrons from a spontaneous fission source of 252Cf. The detector was monitored as a standard.

The second data normalization is a function of the neutron beam intensity. The neutron beam was monitored as a standard.

The TOF between the neutron production target and the fission chamber is used to calculate the incident neutron energy. The momentum of the detected gamma-ray is not included in the kinematics.
In order to compare the measurements with the calculations, a convolution is performed between the γ-peak of the discrete excited levels and a Gaussian function with the following parameters:
- centroid equal to the γ-peak centroid
- area equal to the γ-peak area
- width σ_E determined by the TOF resolution for the neutron detector to Si target distance. With the hypothesis that the width of the Gaussians is only equal to the time of flight resolution, the width is:

$$\sigma_{E_i} = \Delta E_i = 2E_i\Delta t / t$$

With $t = \sqrt{\frac{2m}{E}} m$ the neutron mass, t the distance neutron detector-Si target and Δt equal to the time resolution, σ_{E_i} is then equal to:

$$\sigma_{E_i} = 4 \times 10^{-2} E_i^{3/2}$$

(1)

where the energy units are MeV. In the continuum region, the excitation of the residual nucleus is high compared to the discrete levels region and the resolution for the outgoing neutron energy is rather good. In consequence, the widths of the Gaussians functions in this energy region are small enough not to enlarge the results of the GNASH and EMPIRE-II calculations.

Furthermore, as explained in the introduction, most of the decays of the excited states of 28Si go through its first excited state. Only four decays go directly to the ground state:
- 6.88-MeV (3$^-$) with a branching ratio of 70%
- 7.38-MeV (2$^+$) with a branching ratio of 36%
- 7.41-MeV (2$^+$) with a branching ratio of 94%
- 7.93-MeV (2$^+$) with a branching ratio of 83%

In consequence, in order to compare the calculations from EMPIRE-II and GNASH, the intensities corresponding to the population of these four excited levels and their branching ratios have to be subtracted from the results of the two codes. This was done in the analysis.

IV. RESULTS AND DISCUSSION

As explained in paragraph II, neutron-emission spectra as a function of the residual excitation energy can be obtained from Fig. 7 for a given incident neutron energy. For excitation energies higher than 8-MeV, the excited levels are no longer discrete and become a continuum region with observable peaks. In order to obtain data proportional to the inelastic neutron scattering cross section as a function of the 28Si excitation energy for a given incident neutron kinetic energy, narrow slices are projected on the y-axis in Fig. 7 for incident neutron energies in the range E_0 to $E_0 + h$. For E_0 less than 7 MeV, the slice widths k are equal to 200 keV and for higher E_0, because of the lower statistics, the slice widths k are equal to 1 MeV. Emission spectra are given in Figs. 8, 9 and 10.

IV. A. FIGARO-EMPIRE-II GNASH Comparisons

Because the 1.78 MeV gamma-ray has an angular distribution not included in the calculations, we need to normalize experiments and calculations. Up to 13 MeV, the FIGARO data are normalized to the mean value given by the integration of EMPIRE-II and GNASH data over the excitation eneriges for a given incident neutron energy. For higher energies, as the EMPIRE-II and GNASH data are the sum of $(n, n'), (n, n'(x))$ and $(n, n'(p))$, the FIGARO data are not normalized to EMPIRE-II and GNASH, but are presented on the same graph and are arbitrarily normalized to compare the shape of each distribution and not the intensities.

First of all, it is interesting to notice that EMPIRE-II and GNASH do not give the same intensities for the discrete level distribution or for the continuum region. The input parameters for GNASH have been chosen to give good agreement with previous experimental data on 28Si(n,$n'n'p$) and 28Si(n,$n'p$)3, whereas for EMPIRE-II the input parameters are chosen by default.

In the case where only the (n, n') channel is open, i.e. for incident neutron energies lower than 10 MeV, the measurements show a good agreement with the calculations. Several peaks are well defined: 1.78 MeV, 4.61 MeV, 6.27 MeV and 6.99 MeV. For excitation energy higher than 8 MeV, the energy spacings between levels are too small to allow a peak separation and the continuum region begins. The opening of the $(n, n'n)$ and $(n, n'p)$ channels (see Fig. 1) will induce a difference between the calculations and the measurements; both calculation codes provide the energy distribution of the first emitted neutron from 28Si, without a coincidence window on the transition γ-ray between the first excited state and the ground state following the γ-ray cascade in 28Si. In consequence, the codes provide the first-neutron-emission cross section, which differs from the inelastic neutron cross section.

In the region of incident neutron energies above 14 MeV, the FIGARO data present a different shape than the calculations because the first one gives the 28Si(n,$n'n'$) excitation function and the calculations provide all the decays 28Si(n,n''), 28Si(n,$n'p$) and 28Si(n,$n'p$)3. The presented measured data cannot be normalized to the calculations; only the shapes of the distributions are comparable.
V. CONCLUSION AND PERSPECTIVES

These measurements on FIGARO provide new information on the excitation functions of the neutron emission spectra for 28Si$(n,n')^{28}$Si in coincidence with the first excited state 2$^+$ of the 28Si for incident neutron energies from 4 to 20 MeV. Comparisons with the reaction model codes GNASH and EMPIRE II show a good agreement for incident energies where only the (n,n') channel is open. The two codes GNASH and EMPIRE II present some discrepancies for the intensities of neutron distributions in the discrete region and of the continuum region which could be due to the default parameters used for EMPIRE II. The planned upgrade of FIGARO with another Ge detector and 49 neutron detectors will provide better statistics on the neutron emission spectrum and will allow the use of natural elements with several isotopes such as molybdenum.

Acknowledgments

We wish to thank M. Chadwick and P. Talou from the Los Alamos National Laboratory, NEA/NDCC, for their collaboration and support for the GNASH calculations.

REFERENCES

21. M. CHADWICK and P. TALOU, Private communication 2002
