

Nuclear data uncertainty propagation for a Sodium Fast Reactor

D. Rochman, A.J. Koning, D.F. DaCruz

and S.C. van der Marck

Nuclear Research and Consultancy Group,

NRG, Petten, The Netherlands

April, 2010

Contents

1 Goals:

 \implies Uncertainties on an SFR parameters

② Concept for uncertainty propagation:

 \implies Total Monte Carlo and Perturbation methods

③ SFR Model:

 \implies Kalimer-600 and MCNP

- ④ Nuclear Data: ⇒ $^{235,238}U$, $^{239,240}Pu$, ^{23}Na , ^{56}Fe , ^{90}Zr
- **5** Results:

 \implies *Void coefficient and* k_{eff}

[®] Conclusions and Future Studies

Goals:

- ① Obtain uncertainties on an SFR model due to nuclear data uncertainties
- ⁽²⁾ Systematic approach, reliable and reproducable

Solution (1): Total Monte Carlo

Solution (2): Perturbation method \implies MCNP+ Perturbation cards

Concept: TALYS + **Monte Carlo** = **Total Monte Carlo**

Monte Carlo: 1000 runs of all codes

Kalimer model and MCNP

Simplified full core model of the Kalimer-600 (one single fuel zone for fresh fuel) & Equilibrium reactor core with 4-batches,

Fuel type: metal alloy U-TRU-10 %Zr, isotopic vector provided by KAERI. 238 U: 83 %, 239 Pu: 10 %, 240 Pu: 5 %, 241 Pu: 1 %

6/14

8/14

NRG

Sensitivities to k_{eff}

11/14

Uncertainty on the void coefficient due to nuclear data using the TMC and perturbation methods

Isotope	Varied	Uncertainty	Method
	Nuclear data	on SVR	
²³ Na	all	$\simeq 6~\%$	TMC
²³⁸ U	$(n,inl)+(n,\gamma)$	$\simeq 2~\%$	Pert.
²³⁹ Pu	$(n,f) + (n,\gamma)$	$\simeq 2~\%$	Pert.
²³⁹ Pu	all	$\simeq 2.5~\%$	TMC
²⁴⁰ Pu	$(n,f) + (n,\gamma)$	$\simeq 0.1~\%$	Pert.
⁵⁶ Fe	(n,inl)	$\simeq 0.1~\%$	Pert.
⁹⁰ Zr	$(n,inl)+(n,\gamma)$	$< 0.1 \ \%$	Pert.

Uncertainty on k_{eff} due to nuclear data using the TMC and perturbation methods

urbation methods				
Isotope	Varied	Uncertainty	Method	
	Nucl. data.	on k _{eff} (pcm)		
²³⁸ U	(n,γ)	1000	Pert.	
²³⁹ Pu	all	800	TMC	
²³⁹ Pu	(n,f)	700	Pert.	
²⁴⁰ Pu	(n,f)	600	Pert.	
²³⁸ U	(n,inl)	300	Pert	
²³⁹ Pu	(n, y)	260	Pert.	
²³ Na	all	130	TMC	
241 Pu	(n,f)	120	Pert.	
⁵⁶ Fe	(n,inl)	100	Pert. 13/14	

4

Conclusions and Future improvements

- Two methods were applied to propagate nuclear data uncertainties for a Kalimer model
- Solution Main isotopes were considered (239,240 Pu, 235,238 U, 23 Na, 56 Fe, 90 Zr)
- Results in agreement with previous studies (SG-26) for *initial target accuracies*
- Better evaluation work is necessary to meet *final target accuracies*
- Consider all nuclear data with the TMC method
 - Obtain uncertainty on burn-up (isotope content at the end of cycle)