Nuclear data uncertainty propagation: Total Monte Carlo vs. covariances

D. Rochman, A.J. Koning, S.C. van der Marck,

and D. van Veen

ŃłG

Nuclear Research and Consultancy Group,

NRG, Petten, The Netherlands

Contents

1 Goals:

 \implies Propagate nuclear data uncertainties for the SG-33

- ② Methodology for uncertainty propagation: $\implies TMC \text{ vs. covariances (exact or with covariances ?)}$
- ③ Models:

 \implies (1) Total Monte Carlo and (2) perturbation

4 Tests:

 \implies Consistence between both methods

5 Preliminary results: $\implies on \ k_{eff} \ for \ ^{239,240} Pu, \ pmf1 \ and \ pmf2$

[®] Conclusions

Goals:

- ① Obtain uncertainties for SG-33 due to nuclear data uncertainties
- ⁽²⁾ Systematic approach, reliable and reproducable
- Solution (1): Total Monte Carlo

Solution (2): Perturbation method

 \implies MCNP+ Perturbation cards+covariance files

Total Monte Carlo: examples

For each random ENDF file, the benchmark calculation is performed with MCNP. At the end of the *n* calculations, *n* different k_{eff} values are obtained. In the obtained probability distribution of k_{eff} , the standard deviation σ_{total} reflects two different effects:

$$\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2.$$
(1)

Each random file is completely different than another one: nu-bar ("*MF1*"), resonance parameters ("*MF2*"), cross sections ("*MF3*"), but also *MF4*, *MF5* and *MF6*.

Convergence and consistency of:

發 v-bar.

- ☆ resonance parameter distributions.
- ☆ cross sections probability distributions.
- angular distribution probability distributions.
- ✤ Monte Carlo calculations.
- \circledast the perturbation method.

Convergence and consistency of v-bar and resonance parameters

Convergence TMC/Perturbation

Nuclear data: examples on (n,2n) cross sections 1200 $\overline{^{239}Pu}(n,2n)$ $100 \text{ random } {}^{235}\text{U(n,2n)}$ 100 random Cross section (mbarns) Cross section (mbarns) 600 This work — ENDF/B-VII.0 -----Exp. • 800 400 400 200 This work ENDF/B-VII.0 Exp 0 0 10 151015205 205 Incident neutron energy (MeV) Incident neutron energy (MeV) 3 600 $\overline{^{241}\text{Am}(\dot{n},2n)}$ 100 random $100 \text{ random}^{232}_{232}$ Th(n,2n) Cross section (mbarns) Cross section (barns) This work ENDF/B-VII.0 -----2400 Exp. 200 1 This work

0

5

10

Incident neutron energy (MeV)

15

20

NDF/B-VII.0

10

0

5

Exp.

Incident neutron energy (MeV)

15

20

Results

Comparison TMC-Perturbation methods for a few k_{eff} benchmarks. The ratio in the last column is "TMC over Perturbation".

		Total Monte Carlo	Perturbation	Ratio
Benchmark Isotopes		Uncertainty	Uncertainty	
		due to nuclear	due to nuclear	
		data (pcm)	data (pcm)	
pmf1	²³⁹ Pu	1000	860	1.16
pmf2	²³⁹ Pu	840	720	1.16
pmf2	²⁴⁰ Pu	790	650	1.21

Results: Details of the TMC-Perturbation methods for ^{239,240}Pu k_{eff} benchmarks

	pmf2 ²³⁹ Pu		pmf2 ²⁴⁰ Pu	
	Δk_{eff} (pcm)		$\Delta k_{eff} (pcm)$	
	TMC	Perturbation	TMC	Perturbation
Total	840	720	790	650
MF1	400	-	370	_
(n,inl)	170	140	70	50
(n,el)	250	240	30	40
(n,γ)	100	100	30	30
(n,f)	720	660	730	640
MF4	20	-	20	_
MF5	50	_	30	_
MF6	50	_	30	_

Conclusions

- First attempt to compare two uncertainty propagation method
- Control TMC: more general and exact answer, does not require special codes, more exhaustive
- 🙁 but slower
- Perturbation: approximate, require special processing and codes, limited
 but faster
- TMC uncertainties $\simeq 15-20$ % larger than from perturbation for pmf2 considering 239,240 Pu