PAUL SCHERRER INSTITUT

D. Rochman and E. Bauge

Microscopic correlations from integral data through Monte Carlo sampling: Lessons learned from the past 3 years at PSI and CEA

SG44 meeting, NEA, Paris, 26 November 2019

- Motivation
- Short description on BFMC/BMC
- Inter-isotope covariance found from EXFOR
- Inter-isotope covariance found from fast criticality benchmarks (keff + spectral indexes)
- Inter-isotope covariance found from reactor cycles (boron curve)
- Conclusion

References used in this presentation

- E. Bauge, P. Dossantos-Uzarralde, "Evaluation of the Covariance Matrix of 239Pu Neutronic Cross Sections in the Continuum Using the Backward-Forward Monte-Carlo Method", J. Kor. Phys. Soc. 59 (2011) 1218.
- D. Rochman, E. Bauge, A. Vasiliev and H. Ferroukhi, "Correlation nu-sigma-chi in the fast neutron range via integral information", <u>EPJ/N 3 (2017) 14</u>.
- D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi and G. Perret, "Nuclear data correlation between different isotopes via integral information", <u>EPJ/N 4 (2018) 7</u>.
- E. Bauge and D. Rochman, "Cross-observables and cross-isotopes correlations in nuclear data from integral constraints", EPJ/ N 4 (2018) 35.
- D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi, S. Pelloni, A.J. Koning and J.Ch. Sublet, "Monte Carlo nuclear data adjustment via integral information", <u>EPJ Plus 133 (2018) 537</u>.
- D. Rochman, A. Vasiliev, H. Ferroukhi, S. Pelloni, E. Bauge and A.J. Koning, "Correlation nu-sigma for U-Pu in the thermal and resonance neutron range via integral information", EPJ Plus 133 (2019) 453.
- J.-Ch. Sublet et al., "Neutron-induced damage simulations: Beyond defect production crosssection, displacement per atom and iron-based metrics", EPJ Plus 134 (2019) 350.

BMC/BFMC + differential/integral data

- Motivation 1: integral data are already used during adjustment
- Motivation 2: This should be done at the evaluation level
- Motivation 3: It leads to uncertainty reduction and cross-isotope correlations
- Motivation 4: Modern transport tools can be used (Monte Carlo)
- Motivation 5:nothing new: already done with GLLS by SG... at the OECD

BMC/BFMC + differential/integral data

- <u>Step 1 Preliminary work</u>: in-depth cross section evaluation (traditional method of parameters/models adjustment)
- <u>Step 2 BMC</u>: Based on step 1,
 - Generate n=100 000 (or 1000) random files (TMC-way)
 - Calculate n times the benchmarks
 - Assign weights to all realizations *i* with a chi2 and update the parameter distributions

- Update the cross sections with the weights.

- BFMC variation compared to BMC: (EPJ/ N 4 (2018) 35,
- J. Kor. Phys. Soc. 59, 1218 (2011).)

$$w_i = \exp\left[-\left(\frac{\chi_i^2}{\chi_{\min}^2}\right)^2\right].$$

BMC/BFMC + EXFOR data:

• Based on EXFOR only: Si + SiO₂ + ¹⁶O (EPJ Plus 134 (2019) 350)

I.Net

BMC/BFMC + 1 fast benchmark (pmf1)

• Based on pmf1 : ²³⁹Pu (EPJ/N 3 (2017) 14)

Fig. 2. Prior correlation matrix for ²³⁹Pu ν , σ and χ (for the incident neutron energy of 750 keV). The energy axis is for the incident neutrons for ν and σ , and for the outgoing neutron for χ . The X- and Y-axis are in linear scale.

Fig. 5. Posterior correlation matrix for ²³⁹Pu ν , σ and χ (for the incident neutron energy of 750 keV). The energy axis is for the incident neutrons for ν and σ , and for the outgoing neutron for χ . The X- and Y-axis are in linear scale.

Correlation (%)

PAUL SCHERRER INSTITUT

BMC/BFMC + 1 fast benchmark (pmf1)

• Based on pmf1 : ²³⁹Pu (EPJ/N 3 (2017) 14)

Table 1. Prior and posterior average k_{eff} and uncertainties for selected benchmarks. Uncertainties Δk are given in pcm. C/E values are also indicated.

Benchmark	Prior		Posterior		$C\!/E\!-\!1$ Prior (%)	$C\!/E\!-\!1$ Posterior (%)	
	$ar{k}$	$\pm \Delta k$	$ar{k}$	$\pm \Delta k$			
pmf1	1.00082	± 782	0.99999	± 133	0.08	0.00	
pmf2	1.00171	± 705	1.00023	± 143	0.17	0.02	
pmf3-1	1.00240	± 725	1.00016	± 207	0.24	0.02	
pmf5-1	1.00056	± 782	1.00002	± 93	0.06	0.02	
pmf6-1	1.00156	± 700	1.00018	± 218	0.15	0.02	
pmf13-1	1.00789	± 770	1.00356	± 160	0.45	0.01	
pmf35-1	0.99755	± 760	0.99994	± 113	0.25	0.01	
pmf44-1	0.99878	± 695	0.99772	± 144	0.11	0.00	
pmi2-1	1.01766	± 1018	0.98788	± 209	3.11	0.10	

• Based on imf7 : ²³⁵U- ²³⁸U (EPJ/N 4 (2018) 7)

Table 3. Prior and posterior average k_{eff} and uncertainties for four benchmarks. Uncertainties Δk are given in pcm. C/E values are also indicated. The statistical uncertainty for each MCNP6 calculation is in the order of 25 pcm.

Benchmark	Used in Bayesian update	Exp		Prior		Posterior		Prior C/E-1	Posterior C/E-1
		$k_{ m eff}$	$\pm \Delta k$	\overline{k}	$\pm \Delta k$	\overline{k}	$\pm \Delta k$	(%)	(%)
imf7	yes	1.00450	± 70	1.00156	± 850	1.00446	± 71	-0.29	-0.004
hmf1	no	1.00000	± 100	0.99509	± 1120	0.99691	± 960	-0.49	-0.39
imf1-1	no	0.99880	± 90	0.99767	± 900	0.99984	± 670	-0.11	0.10
lct6-1	no	1.00000	± 200	0.99836	± 405	0.99879	± 440	-0.16	-0.12

BMC/BFMC + 1 fast benchmark (imf7)

Based on imf7: ²³⁵U-²³⁸U (EPJ/N 4 (2018) 7)

Energy-reaction

ratios

BMC/BFMC + 14 fast benchmarks

• Based on 14 fast benchmarks : ²³⁵U-²³⁸U-²³⁹Pu (EPJ Plus 133 (2018) 537)

1.1.1

BMC/BFMC + 14 fast benchmarks

• Based on 14 fast benchmarks : ²³⁵U-²³⁸U-²³⁹Pu (EPJ Plus 133 (2018) 537)

BFMC with a PWR boron concentration

- <u>System</u>: realistic PWR cycle with measured boron concentration
- <u>Random nuclear data</u>: generated based on the ENDF/B-VII.1 library for all isotopes
- <u>Simulation tool</u>: (CASMO5 + SIMULATE5) x (a few thousands of random files)
- EPJ Plus 133 (2019) 453.

BFMC with a PWR boron concentration

• Impact on the boron concentration

PWR boron concentration : Correlation matrices

PWR boron concentration : Posterior cross sections and uncertainties

- Cross-correlations found between isotopes from EXFOR or from integral data in the fast and thermal ranges
- The same can be found using EXFOR with the standards, or any relative measurements
- Decrease of the uncertainties for posterior quantities
- A suggestion: use integral data during the evaluation process,
- Outcome: more correlations, smaller uncertainties and less biases

Wir schaffen Wissen – heute für morgen

