

D. Rochman

TAR in the back-end fuel: mid- and long-term storage from a neutronics aspect

Target Accuracy Requirement from a neutronics aspect

- Driving forces:
 - Safety (criticality, dose)
 - Cask/canister designs (decay heat)
 - Economy (e.g. space optimization, geological environment)
- For spent fuel, important quantities are
 - SNF characteristics (BU, enrichment, cooling, type, inventory)
 - Decay heat
 - Neutron/gamma emission
 - Nuclide concentrations
- Need for code calculations
 - Validation (bias estimation)
 - Uncertainties

http://www.psi.ch/stars

Target Accuracy Requirement from a neutronics aspect

- Strong link with:
 - National efforts
 - EU EURAD WP8, NEA JEFF project, IAEA CRP on Spent Fuel Characterization

Target Accuracy Requirement from a neutronics aspect

- Proposal:
 - Obtain C/E and calculated for decay heat from CLAB, GE Morris and HEPL experiments

 10^{5}

- Same for nuclide concentrations on PIE data
- Link between both

Period of PIE measurements

http://www.psi.ch/stars — 2019.11.26/STARS/RD41 - (4 / 4)

Wir schaffen Wissen – heute für morgen

