

Uncertainties for fusion shielding benchmarks using Total Monte Carlo

D. Rochman, A.J. Koning and S.C. van der Marck

Nuclear Research and Consultancy Group,

NRG, Petten, The Netherlands

June 3, 2009

Contents

① Motivations for a change:

 \implies a roadmap to consistent and state-of-the-art evaluations

② Concept:

⇒ Monte Carlo from nuclear data evaluations to large-scale systems

(3) How does it work ? $\longrightarrow TALVS + M$

 \implies TALYS + Monte Carlo

- ④ Examples with Oktavian, FNS and LLNL benchmarks:
 ⇒ Neutron and gamma leakage for Al, Cu, Si, Ti, Cr, Mn, Co, Mo, Zr, Fe, W, and Mg
- **5** Conclusions

Motivations: How to propagate nuclear data uncertainties through fusion benchmarks ?

Usual procedures in evaluations imply

- First, there were measurements,
- Then nuclear reaction codes (TALYS, GNASH, EMPIRE...),
- Format the output semi-manually to ENDF file,
- Compare with experimental cross sections,
- Modify manually the ENDF file,
- Compare with integral tests,
- Modify manually the ENDF file, ENDF file ready,
- The At last, "Evaluations are available to users", but...
 - ➤ How to include propagation of nuclear data uncertainties with a minimum number of approximations ?

Concept: TALYS + Monte Carlo NRG Possible answer to this problem: Maximization of automation Experimental 5000 random \implies Total Monte Carlo data (i.e. XS) ENDF files TALYS+MC Compilations Average Package (EXFOR) ENDF file **TENDL-2009** library Adjusted Covariance parameters files

Application to shielding benchmarks:

Benchmark	Mat.	Outer	Benchmark	Mat.	Outer \varnothing	Angle
		Ø			or slab thickness	
Oktavian	Al	40 cm	Oktavian	Mo	61 cm	-
Oktavian	Cu	61 cm	Oktavian	Zr	61 cm	-
Oktavian	Si	60 cm	FNS	Fe	20-40 cm	$22.8-42.8^{\circ}$
Oktavian	Ti	40 cm	FNS	W	5 cm	$22.8-38.0^{\circ}$
Oktavian	Cr	40 cm	LLNL	Al	1.6-2.6 mfp	39°
Oktavian	Mn	61 cm	LLNL	Mg	1.2-1.9 mfp	39°
Oktavian	Co	40 cm	LLNL	Fe	0.9-4.8 mfp	39 °

Oktavian: Leakage current spectrum from the outer surface of a spherical pile of material, 14 MeV D-T neutron source at the center of the pile.

- □ FNS: Slabs of material of varying thickness, at five different angles, 20 cm from a 14 MeV D-T neutron source.
- □ LLNL Pulsed Spheres: Time-of-Flight measurements through spherical shells of varying thickness, 14 MeV D-T neutron source.

Examples with ⁶³Cu(n,2n) and ⁶⁵Cu(n,el)

Application for Cr Oktavian benchmark

Application for Mn Oktavian benchmark

Application for Si Oktavian benchmark

G

Application for W FNS benchmarks

Application for Fe FNS benchmarks

Application for Mg LLNL benchmarks

Pros and Cons

- + No MF 32-35 (no 2 Gb files) but every possible cross correlation included
- + No approximation but true probability distribution
- \bigcirc + Only essential info for an evaluation is stored
- + No perturbation code necessary, only "essential" codes
- + Feedback to model parameters
- 😳 + QA
- 🙃 Needs discipline to reproduce
- \bigcirc Memory and computer time

Conclusions and future improvements

- ✗ New methodology to propagate nuclear data uncertainty to integral quantities (k_{eff} benchmarks, shielding benchmarks, reactivity swing, neutron flux for commercial reactor) via Monte Carlo
- Blending differential measurements, evaluations, and validation in one approach
- Proof of principle with some shielding benchmarks

Conclusions and future improvements

- ✗ New methodology to propagate nuclear data uncertainty to integral quantities (k_{eff} benchmarks, shielding benchmarks, reactivity swing, neutron flux for commercial reactor) via Monte Carlo
- Blending differential measurements, evaluations, and validation in one approach
- Proof of principle with some shielding benchmarks
- □ New calculations based on TENDL-2009 (see the JEFF meeting)
- \Box Needs to develop best central-value evaluations ?
- □ Comparison with Hogenbirk method for MCNP
- \Box Compare with more benchmarks
- □ Obtain sensitivity for reaction channels
- □ Need more clever sampling

If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.