

"Total Monte Carlo" Uncertainty propagation applied to the Phase II-2 burnup calculation

(A report for the Assembly Physics of TMI-1 PWR unit cell of the OECD/UAM

working group)

D. Rochman and C.M. Sciolla

Nuclear Research and Consultancy Group NRG, P.O. Box 25, 1755 ZG Petten, The Netherlands NRG Report 13.119615

April 9, 2013

Company Profile

Nuclear Research & consultancy Group (NRG) develops sustainable nuclear technology solutions for energy, health and environment. NRG is an independent, market oriented organization. NRG has longstanding experience in research and development, engineering and consultancy and plant operation support. NRG offers a wide range of high quality services and products to industry and government. NRG is valued by its customers for reliable and custom-made solutions.

1

Contents

1	Introduction		1				
2	Uncertainty propagation 2.1 Methodology	:	2 2 4 7				
3	Description of the SERPENT model		8				
4	Results	1	2				
5	Conclusion	1	5				
\mathbf{A}	Plots of uncertainties for k_∞	1	9				
в	3 Plots of uncertainties for reaction rates 2						
С	Table for nominal values	2	6				
D	Tables for uncertainties from variations of ²³⁵ U nuclear data	3	0				
\mathbf{E}	Tables for uncertainties from variations of ²³⁸ U nuclear data	3	2				
F	Tables for uncertainties from variations of ²³⁹ Pu nuclear data	3	4				
G	Tables for uncertainties from variations of H in H_2O thermal scattering	3	6				
н	Tables for uncertainties from variations of fission products	3	8				
Ι	Tables for uncertainties from variations of minor actinides	4	0				
J	Tables for uncertainties from variations of fission yields	4	2				

List of Tables

4.1	Total uncertainties k_{∞} and reaction rates	12
4.2	Total uncertainties for macroscopic cross sections	12
4.3	Total uncertainties for actinides number densities	13
4.4	Total uncertainties for the number densities of fission products	14
C.1 C.2	Nominal values	26 28
D.1	Results of variations in the 235 U nuclear data; Uncertainties (%)	30
E.1	Results of variations in the 238 U nuclear data; Uncertainties (%)	32
F.1	Results of variations in the $^{239}\mathrm{Pu}$ nuclear data; Uncertainties (%)	34
G.1	Results of variations in the H in H ₂ O thermal scattering; Uncertainties (%) $\ldots \ldots \ldots \ldots$	36
H.1	Results of variations in the fission products data; uncertainties $(\%)$	38
I.1	Results of variations in the minor actinide data; uncertainties $(\%)$	40
J.1	Results of variations in the fission yield data; uncertainties $(\%)$	42

List of Figures

2.1	Schematic of fast TMC	3
2.2	Flowchart of the nuclear data file evaluation	5
3.1	TMI-1 FA Pin Layout	8
3.2	TMI-1 FA Pin Descriptions	9
3.3	TMI-1 FA Details	9
3.4	TMI-1 Parameters	10
3.5	TMI-1 Core Boundary Conditions 1	1
A.1	Uncertainties for k_{∞}	19
B.1	Uncertainties for the 235 U(n, γ) reaction rate	20
B.2	Uncertainties for the 238 U(n, γ) reaction rate	21
B.3	Uncertainties for the 239 Pu(n, γ) reaction rate	21
B.4	Uncertainties for the 240 Pu(n, γ) reaction rate	22
B.5	Uncertainties for the 241 Pu(n, γ) reaction rate	22
B.6	Uncertainties for the 235 U(n,f) reaction rate	23
B.7	Uncertainties for the 238 U(n,f) reaction rate	23
B.8	Uncertainties for the 239 Pu(n,f) reaction rate $\ldots \ldots \ldots$	24
B.9	Uncertainties for the 240 Pu(n,f) reaction rate $\ldots \ldots \ldots$	24
B.10	Uncertainties for the 241 Pu(n,f) reaction rate $\ldots \ldots \ldots$	25

Abstract

The effects of nuclear data uncertainties are studied on a typical PWR fuel assembly model in the framework of the OECD Nuclear Energy Agency UAM (Uncertainty Analysis in Modeling) expert working group. The 'fast Total Monte Carlo' method is applied on a model for the Monte Carlo transport and burn-up code SERPENT. Uncertainties on k_{∞} , reaction rates, two-group cross sections, inventory and local pin power density during burn-up are obtained, due to transport cross sections for the actinides and fission products, fission yields and thermal scattering data. These results are submitted to the working group for the Phase-II study.

NZG

Chapter 1

Introduction

Since the beginning of the century, the nuclear data evaluation community is putting more and more attention to the assessment of uncertainties. This increased interest concerns both basic data (cross sections, emission spectra...) and calculated quantities for large systems, such as neutron multiplication factor $(k_{\rm eff})$ for a reactor, void coefficient, leakage flux and others.

In the following we will apply the fast Total Monte Carlo (fast TMC) method for the benchmark exercise of the Phase II-2 burnup calculation as defined in Ref. [1].

The proposed approach for uncertainty calculations, now called "fast Total Monte Carlo", makes use of today's tremendous computational power and was extensively presented in dedicated references [2, 3]. The propagation of nuclear data uncertainties to reactor-type systems can be realized by means of Monte Carlo calculations, by repeating a large number of times the same simulations calculation (typically a thousand times), each time using a different nuclear data file for the isotope of interest. This collection of random nuclear data files are produced by running the nuclear reaction code TALYS [4] many times and contains cross sections, resonance parameters, single-and double-differential distributions. All these quantities are thus randomly varied from one benchmark calculation to another. In the present case, the NJOY processing code [5] processes all these nuclear data libraries into ACE files which are then used by the Monte Carlo code SERPENT [6]. Finally, for every random nuclear data library an entire SERPENT calculation is performed. In the TALYS calculations, the different data files are obtained by randomly changing the nuclear model input parameters (optical models, level densities...). With this "fast Total Monte Carlo" approach, the pin cell calculations are presented with inclusion of their uncertainties, using a method without linearization, and implicitly taking into account cross section correlations, cross correlation between reactions and the uncertainties of single- and double-differential distributions.

This is the underlying method which is applied in this work. The generalization of this method to a large number of nuclear data (cross sections, resonance parameters, neutron emission...) and of systems (a few tens of criticality benchmarks) is called "fast Total Monte Carlo" in the following. The following results are also based on this methodology: the robustness of TALYS coupled to Monte Carlo calculations [7, 8], the Total Monte Carlo method for nuclear uncertainty propagation [2], criticality benchmarks [9, 10, 11], fusion benchmarks [12, 13], reactor calculations [14, 15, 16, 17], self-shielding [18], nuclear data adjustment [19, 20] and finally the massive production of nuclear data evaluations and covariances for the TENDL libraries [21, 22, 23, 24].

Chapter 2

Uncertainty propagation

In this application of the fast TMC method, a few parameters and nuclear data have been randomized such as:

- Major actinides: ²³⁵U, ²³⁸U, ²³⁹Pu,
- Thermal scattering data: H in H₂O,
- 12 Fission yields: ^{234,235,236,238}U, ^{239,240,241}Pu, ²³⁷Np, ^{241,243}Am, ^{243,244}Cm,
- 13 Minor actinides: ^{234,236,237}U, ²³⁷Np, ^{238,240,241,242}Pu, ^{241,242g,243}Am, ^{242,245}Cm
- $\label{eq:states} \bullet 138 \ fission \ products: \ {}^{72-74,76} Ge, \ {}^{75} As, \ {}^{76-80,82} Se, \ {}^{79,81} Br, \ {}^{80-84,86} Kr, \ {}^{85,87} Rb, \ {}^{86-88,92} Sr, \ {}^{89} Y, \ {}^{93,95} Zr, \ {}^{94,95} Nb, \ {}^{95-97} Mo, \ {}^{99} Tc, \ {}^{99} Tc, \ {}^{99-104,106} Ru, \ {}^{103,105,106} Rh, \ {}^{104-108,110} Pd, \ {}^{109} Ag, \ {}^{111-114,116} Cd, \ {}^{113,115} In, \ {}^{115,117-119,126} Sn, \ {}^{121,123,125} Sb, \ {}^{122-128,130} Te, \ {}^{127,129,135} I, \ {}^{128,130-132,134-136} Xe, \ {}^{133-137} Cs, \ {}^{134-138} Ba, \ {}^{140} La, \ {}^{140,142} Ce, \ {}^{141,144} Pr, \ {}^{142-146,148,150} Nd, \ {}^{147-149} Pm, \ {}^{147,149-152,154} Sm, \ {}^{151-156} Eu, \ {}^{152,154-158,160} Gd, \ {}^{159,160} Tb, \ {}^{160-164} Dy, \ {}^{165} Ho, \ {}^{166,167} Er. \ {}^{165} Ho, \ {}^{166,167} Er. \ {}^{166} Ho, \ {}^{166} Ho, \ {}^{166,167} Er. \ {}^{166} Ho, \ {}^{166} H$

In the whole calculation process, the reactor power is kept constant (see Ref. [1] for details).

The uncertainty on a quantity x is defined as $\Delta \sigma / \sigma \times 100$, with $\Delta \sigma$ the standard deviations of the probability distributions obtained by varying the element of interest:

$$\Delta \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\sigma_i - \overline{\sigma})^2}$$
(2.1)

with σ_i the quantity for the run *i* and $\overline{\sigma}$ the average of σ_i .

2.1 Methodology

The same SERPENT model for each of the calculation is used in the Monte Carlo method. In the same way, the same version of the processing tool NJOY [25, 5] (version 99.364) is used for the entire study.

The procedure to generate random ENDF files together with an ENDF file containing the average cross sections and the covariance information was detailed in Ref. [2, 3]. In summary, 20 to 30 theoretical parameters are all varied together within pre-determined ranges to create TALYS inputs. With the addition of a large number of random resonance parameters, nuclear reactions from thermal energy up to 20 MeV are covered. The TALYS system creates random ENDF nuclear data files based on these random inputs. At the end of the random file generation, the covariance information (average, uncertainties and correlations) are extracted and formatted into an ENDF file. After the generation of random nuclear data files, a few codes and programs are used: SERPENT and NJOY. To

produce files used by SERPENT, the ACER module of NJOY is needed.

We emphasize that automation and a disciplined, quality assured working method (with emphasis on reproducibility) is imperative to accomplish this. First of all, the codes TALYS, NJOY and SERPENT need to very

2.1. METHODOLOGY

robust and secured against relatively large variations in input parameters. Next, all detailed knowledge about the material/benchmark in question should be present in the input files of these codes. It is clear that manual intervention must be completely excluded in the sequence of code calculations. Once all that is assured, the rest is relatively simple: if we can do a full calculation loop once, we can also do it 1000 times.

The input files for this method are a SERPENT geometry input file and n random ENDF files. Each random ENDF file is produced by the TALYS system (see Fig. 2.2), is fully reproducible and consists of a unique set of nuclear data. Each random file is completely different from another one: nu-bar and energy released per fission ("MF1" in ENDF language), resonance parameters ("MF2"), cross sections ("MF3"), angular distributions ("MF4"), fission neutron spectrum ("MF5"), double differential data ("MF6"), isomeric data ("MF8-10") and gamma production data ("MF12-15") are varied. Examples of random cross sections for important actinides are presented in Ref. [26].

Only the main outlines will be repeated here. The fast TMC method takes advantages of associating the randomization of nuclear data inputs together with the random source neutrons. It simply consists of repeating identical calculations with each time different random nuclear data files and random seeds for random number generator of the Monte Carlo transport code. Additionally, the neutron history for each random calculation is a relatively small: if m neutron histories is desirable to obtain a sufficiently small statistical uncertainty for a given calculation, then each random set is using m/n neutron history, n being the number of random files. In Ref. [3], it is advised to take n = 300. m/n should not be too small, and n can be decreased to obtain an acceptable m/n value. The obtained spread in a calculated quantity will then reflect the spread of input parameters such as nuclear data.

Figure 2.1: Simplified presentation of the TMC and fast TMC methods in case of deterministic and Monte Carlo simulations.

This method can be applied to quantities during burn-up calculations: k_{eff} , nuclide inventory, reaction rates, grouped cross sections... As fast TMC will be applied with the Monte Carlo transport and depletion code SERPENT, the observed spread (for instance in k_{eff}) can be related to nuclear data with the following equation:

$$\sigma_{\rm observed}^2 = \sigma_{\rm nuclear\ data}^2 + \overline{\sigma}_{\rm statistics}^2 \tag{2.2}$$

In the following, σ is the standard deviation of a distribution and will be used for the definition of uncertainty. σ_{observed} is the observed standard deviation from the *n* realizations of the same SERPENT calculation, each time with different nuclear data. $\sigma_{\text{nuclear data}}$ is the uncertainty on the calculated quantity due to the variations of nuclear data. $\overline{\sigma}_{\text{statistics}}$ is the statistical uncertainty from the *m* neutron history.

If σ_{observed} is simply "observed", $\overline{\sigma}_{\text{statistics}}$ needs to be calculated. In the case of quantity provided by SERPENT

with their own statistical uncertainty, $\overline{\sigma}_{\text{statistics}}$ can be obtained with the following equation:

$$\overline{\sigma}_{\text{statistics}} = \frac{1}{n} \sqrt{\sum_{i=1}^{n} \sigma_{\text{statistics,i}}^2}$$
(2.3)

 $\sigma_{\text{statistics,i}}$ is the statistical uncertainty provided by SERPENT for the run *i*, with *i* from 0 to *n*. Eq. (2.3) is valid if the seed of the random number generator of the Monte Carlo transport part of the code is randomly changed. In the case of the original TMC description, the seed is set to a unique value for all the *n* runs, making the use of Eq. (2.3) not possible. In fast TMC, *n* calculations with m/n neutron histories is realized in the equivalent time of one unique calculation with *m* neutron history.

In the case of quantities not provided with their own statistical uncertainties, such as number densities for the isotope inventory, one needs to independently evaluate $\sigma_{\text{statistics,i}}$. In this case, *n* calculations are also realized, but only changing randomly the seed. Thus, the spread in the observed quantity is only due to the statistics. This assessment of $\sigma_{\text{statistics,i}}$ is increasing the calculation time by a factor 2, leading to the calculation of $\sigma_{\text{nuclear data}}$ in twice the time of one unique calculation with *m* neutron history.

Finally, in the case of possible bias in $\sigma_{\text{statistics,i}}$ (as explained in Ref. [3]), the independently evaluation of $\sigma_{\text{statistics,i}}$ is recommended.

In practice, the following is performed:

- 1. realize a first SERPENT calculation for a given geometry and all nuclear data set to ENDF/B-VII.1, with $n = 2000 \times 500$ (2000 neutron histories for 500 cycles),
- 2. repeat the same calculation m times (m from 100 to 300, depending on the convergence rate of the uncertainties), with each time different random seeds and nuclear data (see next section),
- 3. extract k_{eff} distributions and use Eqs. (2.2) and (2.3) to extract $\sigma_{nuclear data}$.

Burnup calculations are performed up to 60 GWd/tHM, followed by cooling time. In each burnup steps, the random nuclear data are used, thus propagating the effect of nuclear data through depletion steps.

2.2 Production of nuclear data

The method applied in this paper, fast Total Monte Carlo, is based on Monte Carlo calculations, complete control over nuclear data and because of the large number of calculations involved, no manual intervention. The simple idea of the TMC method is to repeat the same reactor physics calculation a large number of times, randomly varying each time the entire nuclear data library. Therefore, each calculation will give a different result, defining a probability distribution for the calculated quantity. Depending on the variation of the nuclear data, different distributions (average and standard deviation) can be obtained for quantities such as k_{eff} , inventory, void coefficient and so on. To obtain random sets of nuclear data, one can start from existing covariance files found in nuclear data libraries and generate random cross sections. Then each random simulation would use these random cross sections. This approach, if already more exact and easier to use than a perturbation-based calculation, suffers from the limited availability of covariance files, often restricted to cross sections.

The method proposed in the following is not using covariance files, but is instead generating random nuclear data from fundamental theoretical nuclear quantities with the help of a nuclear reaction code (such as TALYS [4]). The TMC method has already been presented in a few dedicated papers (see for instance Ref. [2, 7] for the description of the methodology). It was already successfully applied to different systems: validation of ²³Na [8], ^{63,65}Cu [27] and ²³⁹Pu [19], void coefficient, k_{eff}, β_{eff} , burn-up and radiotoxicity for a Kalimer-type Sodium Fast Reactor [17], fusion systems [12], criticality-safety benchmarks [10]. The TMC Method was compared with traditional methods of uncertainty propagation [15] and has proved to be simpler to use with the bypass of covariance processing codes.

It revolves around the idea to calculate a large number of times the same quantity, each time randomly changing parts of the nuclear data. In order to achieve that, a complete control on the nuclear data production is required. It is not specific to actinides, although it should be mentioned that the main difference between an evaluation of a major actinide and a regular isotope is the amount of time spent to obtain the best possible TALYS input parameters.

Once these input parameters are known (together with their uncertainties), they are stored to be re-used as needed. The complete schematic approach is presented in Fig. 2.2.

Figure 2.2: Flowchart of the nuclear data file evaluation and production with the TALYS system.

The full nuclear data file production relies on a small number of codes and programs, automatically linked together. The output of this system is either one ENDF-6 formatted file, including covariances if needed, or a large number of random ENDF-6 files. The central evaluation tool is the TALYS code. A few other satellite programs are used to complete missing information and randomize input files. At the end of the calculation scheme, the formatting code TEFAL produces the ENDF files. The following programs are used in this work:

• The TALYS code

The nuclear reaction code TALYS has been extensively described in many publications (see Refs. [4, 28]). It simulates reactions that involve neutrons, gamma-rays, *etc* from thermal to 200 MeV energy range. With a single run, cross-sections, energy spectra, angular distributions *etc* for all open channels over the whole incident energy range are predicted. The nuclear reaction models are driven by a restricted set of parameters, such as optical model, level density, photon strength and fission parameters, which can all be varied in a TALYS input file. All information that is required in a nuclear data file, above the resonance range, is provided by TALYS.

• The TASMAN code

TASMAN is a computer code for the production of covariance data using results of the nuclear model code TALYS, and for automatic optimization of the TALYS results with respect to experimental data. The essential idea is to assume that each nuclear model (*i.e.* TALYS input) parameter has its own uncertainty, where often the uncertainty distribution is assumed to have either a Gaussian or uniform shape. Running TALYS many times, whereby each time all elements of the input parameter vector are *randomly* sampled from a distribution with a specific width for each parameter, provides all needed statistical information to produce a full covariance matrix. The basic objective behind the construction of TASMAN is to facilitate all this.

TASMAN is using central value parameters, as well as a probability distribution function. The central values were chosen to globally obtain the best fit to experimental cross sections and angular distributions (see for instance Ref. [29]). The uncertainties on parameters (or widths of the distributions) are also obtained by

comparison with experimental data, directly taken from the EXFOR database [30]. The distribution probability can then be chosen between, equiprobable, Normal or other. In principle, with the least information available (no measurement, no theoretical information), the equiprobable probability distribution should be chosen. Otherwise, the Normal distribution is considered.

An important quantity to obtain rapid statistical convergence in the Monte Carlo process is the selection of random numbers. Several tests were performed using pseudo-random numbers, quasi-random numbers (Sobol sequence), Latin Hypercube random numbers or Centroidal Voronoi Tessellations random numbers. As the considered dimension (number of parameters for a TALYS calculation) is rather high (from 50 to 80), not all random number generators perform as required (covering as fast as possible the full parameter space, without repeating very similar configurations and avoiding correlations). For the time being, the random data files are produced using the Sobol quasi-random number generator.

• The TEFAL code

TEFAL is a computer code for the translation of the nuclear reaction results of TALYS, and data from other sources if TALYS is not adequate, into ENDF-6 formatted nuclear data libraries. The basic objective behind the construction of TEFAL is to create nuclear data files without error-prone human interference. Hence, the idea is to first run TALYS for a projectile-target combination and a range of incident energies, and to obtain a ready to use nuclear data library from the TEFAL code through processing of the TALYS results, possibly in combination with experimental data or data from existing data libraries. This procedure is completely automated, so that the chance of *ad hoc* human errors is minimized.

• The TARES program

This is a code to generate resonance information in the ENDF-6 format, including covariance information. It makes use of resonance parameter databases such as the EXFOR database [30], resonance parameters from other libraries (ENDF/B-VII.0 [31]) or compilations (Ref. [32]). ENDF-6 procedures can be selected, for different R-matrix approximations, such as the Multi-level Breit Wigner or Reich Moore formalism. The covariance information is stored either in the "regular" covariance format or in the compact format. For short range correlation between resonance parameters, simple formulas as presented in Ref. [7] are used, based on the capture kernel. No long-range correlations are considered for now.

In the case of major actinides, resonance parameters are taken from evaluated libraries, such as ENDF/B-VII.0 or JEFF-3.1. These values are almost never given with uncertainties. In this case, uncertainties from compilations or measurements are assigned to the evaluated resonance parameters. Although not the best alternative, it nevertheless allows to combine central values with uncertainties.

For the unresolved resonance range, an alternative solution to the average parameters from TALYS is to adopt parameters from existing evaluations. In the following, this solution is followed. The output of this program is a resonance file with central values (MF2), a resonance file with random resonance parameters (MF2) and two covariance files (MF32 standard and compact).

• The TANES program

TANES is a simple program to calculate fission neutron spectrum based on the Los Alamos model [33]. The original Madland-Nix [34] or Los Alamos model for the calculation of prompt fission neutrons characteristics (spectra and multiplicity) has been implemented in a stand-alone module. The TANES code is using this stand-alone module, combined with parameter uncertainties (on the total kinetic energy, released energy and multi-chance fission probabilities) to reproduce and randomize the fission neutron spectrum. The output of this program is the central and random values for the fission neutron spectra at different incident energies (MF5) and their covariances (MF35).

• The TAFIS program

TAFIS is used to calculate fission yields, prompt neutron emission from fission and other necessary fission quantities (kinetic energy of the fission products, kinetic energy of the prompt and delayed fission neutrons, total energy released by prompt and delayed gamma rays). For fission yields, it is using the systematics of fission-product yields from A.C. Wahl [35], combined with *ad hoc* uncertainties. It calculates the independent and cumulative fission yields at any incident energy up to 200 MeV and for different incident particles (spontaneous, neutrons, protons, deuterons, *etc*). Empirical equations representing systematics of fission-product yields are

derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide (Z = 90 to 98 and A = 230 to 252). For neutron emission, different models are used depending on the energy range and are presented in Ref. [35]. The output of this program is a fission yield file with uncertainties, prompt neutron emission files for central and random values (MF1 MT452), a list of central and random fission quantities (MF1 MT458) and prompt neutron covariances (MF31).

• Autotalys

Autotalys is a script which takes care of the communication between all software and packages described above and runs the complete sequence of codes, if necessary for the whole nuclide chart. Many options regarding TALYS and all other codes can be set, and it makes the library production straightforward.

2.3 Type of nuclear data

Because of the different stages of the reactor calculations (transport, depletion and radiotoxicity), the nuclear data have been historically divided in different categories. The underlying quantities are nevertheless the same. For instance, because different codes are used to calculate the transport of neutrons and the depletion of fuel, different nuclear data (namely transport and activation data) happened to be used for the same reactions. With SERPENT, it is now possible to specify a unique source of nuclear data for the whole chain of calculations, from the first irradiation time to centuries of decay.

For convenience, some parts of the nuclear data are still separated because of the type of physics they represent: fission yields, decay data (half-lifes, Q-values, gamma decay scheme...) and reactions of a nucleus with an incident neutron (cross sections, emitted particles, emission spectra, angular distributions...). These three types of data are also measured and evaluated by different communities with different knowledge. In the following we will separate these three types of nuclear data to assess their individual impacts. In the following, the next three terms will be used:

- transport data: it will be associated with cross sections, angular distributions, single and double differential data, emission spectra. These quantities are used in the transport calculations as well as with the depletion code. The uncertainties on these quantities were verified in many different calculations and references (see for instance Refs. [2, 7, 8, 27, 19, 17, 12, 10]), These data are usually grouped in a file called *ENDF file*, divided in different parts, called *MF1*, *MF2*,...,*MF35*.
- 2. fission yields: In the depletion calculations, the fission products produced from the fission of actinides are accounted based on the fission yields taken from separated evaluated files. In the present case, they are obtained from the TAFIS code and normalized to the ENDF/B-VII.0 yields and uncertainties. If a yield (and its uncertainty) is present in ENDF/B-VII.0, it is used in this work, and in the contrary, the Wahl systematics is used [35]. For the present calculations, yield uncertainties are limited to a maximum of 100 %.
- 3. and the *decay data* are the decay properties of an excited or unstable nucleus (half-lifes, Q-values, decay scheme).

Chapter 3 Description of the SERPENT model

The description of the geometry of the benchmark is given in Ref. [1].

This test case is modeled to the parameters of TMI-1 and based on an experiment performed at the Takahama-3 reactor. It is a long-term irradiation case with a constant power level at all times. The case is modeled using a single fuel assembly, and all of the parameters are defined in Ref. [1]. The geometry of the TMI-1 FA is defined in Fig. 3.1.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2	-	g	-	-	-	-	-	-	-	-	-	-	-	g	-
3	-	-	-	-	-	G	-	-	-	G	-	-	-	-	-
4	-	-	-	G	-	-	-	-	-	-	-	G	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6	-	-	G	-	-	G	-	-	-	G	-	-	G	-	-
7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-	Ι	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	-	-	G	-	-	G	-	-	-	G	-	-	G	-	-
11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12	-	-	-	G	-	-	-	-	-	-	-	G	-	-	-
13	-	-	-	-	-	G	-	-	-	G	-	-	-	-	-
14	-	g	-	-	-	-	-	-	-	-	-	-	-	g	-
15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Figure 3.1: TMI-1 FA Pin Layout.

The numbers in the above figure represent the various rods that are in the FA, and they are defined in Fig. 3.2. Other details about this FA are given in Fig. 3.3. The physical dimensions and parameters of the fuel rods are found

Marker	Rod Type
g	2.0 w/o Gd 4.12% 235U pin
G	Guide Tube
Ι	Instrumentation Tube
-	4.12% 235U fuel pin

Figure 3.2: TMI-1 FA Pin Descriptions.

FA Pitch	218.1 mm
Active Height	3657.6 mm
# Guide Tubes	16
# Instrumentation Tubes	1
# 2.0 w/o Gd pins	4
# 4.12% 235U pins	204
Total rods/FA	225

Figure 3.3: TMI-1 FA Details.

in Fig. 3.4. The TMI-1 core's boundary conditions define the nominal operating conditions of the entire core. They

Cladding OD	10.922 mm
Cladding ID	9.58 mm
Cladding Thickness	0.673 mm
Pin Pitch	14.427 mm
Fuel Pellet OD	9.390 mm
Fuel Pellet Height	11.4 mm
% Density	93.8% TD
Guide Tube OD	13.462 mm
Guide Tube ID	12.649 mm
Instrumentation Tube OD	12.522 mm
Instrumentation Tube ID	11.201 mm

Figure 3.4: TMI-1 Fuel, Guide, and Instrumentation Rod Dimensions and Parameters.

are given in Fig. 3.5. $\,$

Core Power	2772 MWt
Coolant Temperature	578 K
Core Pressure	15.51 MPa
Core Coolant Flow Rate	16052.4 kg/sec

Figure 3.5: TMI-1 Core Boundary Conditions

NZG

Chapter 4

Results

The complete results for all modified parameters and nuclear data are presented in Appendix D.1 to J and some results are also presented in Figures A.1 to B.10. The amount of available data is rather large and only the main contributors to the uncertainties will be presented in this section.

The "engineering parameters" such as the pellet diameter, the fuel enrichment, the fuel density and the moderator density are not part of the benchmark requirements and therefore will not be included in the following ranking. But readers interested in these quantities can refer to the Appendix. In Tables 4.1 to 4.4 are presented the most important reactions in terms of uncertainties for quantities of interest.

	Burnup (GWd/MTU)									
	0	0.2	10	20	30	40				
k_{∞}	0.710	0.698	0.699	0.741	0.737	0.748				
rr 235 U _{n,γ}	2.06	2.04	2.03	2.14	2.30	2.56				
rr $^{238}\mathrm{U}_{n,\gamma}$	1.82	1.81	1.72	1.70	1.49	1.31				
rr 239 Pu _{n,\gamma}	2.68	2.64	2.13	1.96	1.95	2.04				
rr 240 Pu _{n,\gamma}	4.89	5.11	4.93	4.55	4.54	4.66				
rr 241 Pu _{n,\gamma}	1.80	2.07	1.70	1.67	1.85	2.13				
$\operatorname{rr}^{235}\operatorname{U}_{n,f}$	0.57	0.59	0.79	1.17	1.58	2.10				
$\operatorname{rr}^{238}\operatorname{U}_{n,f}$	7.38	7.41	5.78	4.94	4.41	4.10				
rr 239 Pu _{n,f}	2.24	2.21	2.22	2.12	2.17	2.36				
rr 240 Pu _{n,f}	3.08	3.11	2.53	2.20	2.02	1.81				
rr 241 Pu _{n,f}	1.60	1.59	1.32	1.33	1.56	1.93				

Table 4.1: Total uncertainties for k_{∞} and reaction rates (%) varying 235 U, 238 U, 239 Pu, fission products, minor actinides, fission yields and H in H₂O thermal scattering. Details are given in appendix.

Table 4.2: Total uncertainties for macroscopic cross sections (%) varying 235 U, 238 U, 239 Pu, fission products, minor actinides, fission yields and H in H₂O thermal scattering. Details are given in appendix.

	Burnup (GWd/MTU)						
	0	0.2	10	20	30	40	
Σ_{abs1}	1.25	1.18	1.22	1.27	1.23	1.30	
			Cont	inued o	on next	page	

Table $4.2 - 6$	contin	ued fr	om pr	evious	page	
		Bur	nup (G	Wd/M	TU)	
	0	0.2	10	20	30	40
Σ_{abs2}	1.67	1.64	1.32	1.20	1.25	1.36
Σ_{fiss1}	1.80	1.80	1.85	1.90	1.88	1.96
Σ_{fiss2}	2.13	2.11	1.76	1.59	1.57	1.69
$\nu \Sigma_{fiss1}$	2.13	2.13	2.16	2.23	2.26	2.42
$\nu \Sigma_{fiss2}$	2.12	2.10	1.68	1.54	1.55	1.69
\mathbf{D}_1	2.14	2.23	1.81	1.56	1.40	1.28
D_2	5.64	5.63	5.64	5.54	5.62	5.39
Σ_{trn1}	2.26	2.36	1.98	1.75	1.63	1.53
Σ_{trn2}	5.39	5.41	5.36	5.34	5.38	5.20
$InvVel_1$	3.63	3.64	3.45	3.34	3.22	3.18
$InvVel_2$	1.56	1.59	1.58	1.56	1.56	1.51
scatt. gr. 1 to gr. 1	1.48	1.49	1.35	1.27	1.22	1.20
scatt. gr. 2 to gr. 1	6.81	6.96	6.84	7.51	7.55	7.67
scatt. gr. 1 to gr. 2	1.67	1.68	1.56	1.50	1.46	1.45
scatt. gr. 2 to gr. 2	6.38	6.35	6.33	6.34	6.32	6.30
ADF, side W, gr. 1	0.25	0.22	0.32	0.43	0.21	0.18
ADF, side S, gr. 1	0.25	0.22	0.32	0.43	0.21	0.18
ADF, side E, gr. 1	0.25	0.22	0.32	0.43	0.21	0.18
ADF, side N, gr. 1	0.25	0.22	0.32	0.43	0.21	0.18
ADF, side W, gr. 2	0.70	0.75	0.64	0.81	0.66	0.74
ADF, side S, gr. 2	0.70	0.75	0.64	0.81	0.66	0.74
ADF, side E, gr. 2	0.70	0.75	0.64	0.81	0.66	0.74
ADF, side N, gr. 2	0.70	0.75	0.64	0.81	0.66	0.74

Table 4.3: Total uncertainties for actinides number densities (%) varying 235 U, 238 U, 239 Pu, fission products, minor actinides, fission yields and H in H₂O thermal scattering. Details are given in appendix.

	Burnup (GWd/MTU)									
	0	0.2	10	20	30	40				
N_d ²³⁴ U	0	0.03	1.63	3.26	4.98	6.63				
N_d ²³⁵ U	0	0	0.17	0.41	0.79	1.35				
N_d ²³⁶ U	0	2.06	1.95	1.92	1.90	1.89				
N_d ²³⁸ U	0	0	0.01	0.02	0.03	0.04				
N_d ²³⁷ Np	0	36.16	10.94	6.70	5.29	4.84				
N_d ²³⁸ Pu	0	36.89	15.85	11.07	9.43	8.97				
${ m N}_d$ ²³⁹ Pu	0	1.90	1.81	2.10	2.40	2.69				
${ m N}_d$ ²⁴⁰ Pu	0	4.32	2.06	2.23	2.69	3.19				
${ m N}_d$ ²⁴¹ Pu	0	8.85	5.79	4.48	3.61	3.23				
N_d ²⁴² Pu	0	10.70	7.24	5.42	4.14	3.38				
N_d ²⁴¹ Am	0	9.43	5.98	4.79	4.72	5.57				
N_d ²⁴³ Am	0	16.59	13.76	11.95	10.50	9.07				
N_d ²⁴² Cm	0	14.69	11.82	10.05	8.60	7.32				
N_d ²⁴⁴ Cm	0	21.43	18.67	16.90	15.47	14.07				

Table 4.4: Total uncertainties for the number densities of fission products (%) varying 235 U, 238 U, 239 Pu, fission products, minor actinides, fission yields and H in H₂O thermal scattering. Details are given in appendix.

		I	Burnup (GWd/N	(TU)	
	0	0.2	10	20	30	40
N_d ⁹⁰ Sr	0	6.17	5.95	5.80	5.69	5.61
N_d ⁹⁵ Mo	0	5.55	5.33	5.49	5.93	6.49
N_d ⁹⁹ Tc	0	12.45	11.11	10.29	9.75	9.42
N_d ¹⁰¹ Ru	0	2.62	2.68	3.04	3.48	3.92
N_d ¹⁰³ Rh	0	13.29	11.72	11.28	11.38	11.71
N_d ¹⁰⁹ Ag	0	34.82	26.65	25.45	23.25	21.29
N_d ¹²⁹ I	0	8.18	8.49	10.71	12.47	13.75
N_d ¹³³ Xe	0	11.27	9.68	8.91	8.47	8.31
N_d ¹³⁵ Xe	0	7.08	6.97	7.09	7.28	7.53
N_d ¹³³ Cs	0	3.74	3.51	3.54	3.78	4.15
N_d ¹³⁴ Cs	0	14.22	12.19	11.97	11.65	11.25
N_d ¹³⁷ Cs	0	2.11	2.05	2.03	2.02	2.03
N_d ¹⁴⁴ Ce	0	2.57	2.87	3.55	4.34	5.14
N_d ¹⁴² Nd	0	22.08	22.01	22.03	21.91	21.78
N_d ¹⁴³ Nd	0	4.09	4.08	4.55	5.27	6.03
N_d ¹⁴⁴ Nd	0	2.44	3.96	4.29	4.44	4.50
N_d ¹⁴⁵ Nd	0	4.71	4.67	5.25	6.21	7.34
N_d ¹⁴⁶ Nd	0	16.54	15.01	13.94	13.10	12.45
N_d ¹⁴⁸ Nd	0	16.56	14.59	13.52	12.76	12.22
$N_d \ ^{147}Sm$	0	9.59	9.75	11.52	14.17	16.89
N_d ¹⁴⁹ Sm	0	12.41	9.40	8.76	8.79	9.07
N_d ¹⁵⁰ Sm	0	12.50	10.26	9.13	8.59	8.34
N_d ¹⁵¹ Sm	0	29.31	21.93	16.72	13.52	11.65
$N_d \stackrel{152}{\sim} Sm$	0	29.05	16.65	14.38	12.68	11.53
N_d ¹⁵³ Eu	0	30.01	16.75	13.39	12.26	11.74
N_d ¹⁵⁴ Eu	0	34.94	24.66	19.43	16.00	13.55
N_d ¹⁵⁵ Eu	0	32.71	16.92	14.58	13.67	12.12
N_d ¹⁵⁵ Gd	0	32.81	18.17	13.47	12.42	11.95
$N_d {}^{156}_{157} Gd$	0	36.47	16.96	13.18	12.05	11.45
$N_d \stackrel{157}{\longrightarrow} Gd$	0	33.77	22.79	20.87	19.03	17.96
N_d ¹⁵⁸ Gd	0	31.14	17.18	16.60	16.17	16.15

Chapter 5 Conclusion

In this work, the fast "Total Monte Carlo" method is used to propagate nuclear data uncertainties for the PWR burnup assembly benchmark as defined in the Uncertainty Analysis in Modeling (UAM) benchmark. Results for k_{∞} , reaction rates, number densities and local power are presented as function of burn-up steps. These results can now be compared with results from other methods. Depending on the quantity of interest, different quantities can play an important role. In the case of k_{∞} , ²³⁵U(n,f) and ²³⁹Pu(n,f) are the two main contributors to the total uncertainty (see Table 4.1). The engineering parameters (pellet diameter, fuel enrichment and density, and moderator density) have an important effect on the calculated quantities, often higher than the effect of nuclear data. This work is submitted to the UAM working group, and after feedback, it will be condensed in a paper submitted

This work is submitted to the UAM working group, and after feedback, it will be condensed in a paper submitted for an peer-reviewed journal.

Bibliography

- T. Blyth, M. Avramova, K. Ivanov, E. Royer, E. Sartori, O. Cabellos, H. Feroukhi, and E. Ivanov. Benchmark for uncertainty analysis in modeling (uam) for design, operation and safety analysis of lwrs. Technical Report version 2.0, OECD/NEA, 2013.
- [2] A.J. Koning and D. Rochman. Towards sustainable nuclear energy: Putting nuclear physics to work. Annals of Nuclear Energy, 35:2024, 2008.
- [3] D. Rochman, S.C. van der Marck, A.J. Koning, H. Sjostrand, P. Helgesson, and W. Zwermann. Efficient use of monte carlo: uncertainty propagation. to be submitted in Nucl. Sci. and Eng., 2013.
- [4] A.J. Koning, S. Hilaire, and M.C. Duijvestijn. Talys-1.0. In proceedings of the International Conference on Nuclear Data for Science and Technology. Nice, France, April 23-27 2007. www.talys.eu.
- [5] R.E. McFarlane and D.W. Miur. The njoy nuclear data processing system, version 91. Technical Report LA-17740-M, Los Alamos National Laboratory, Los Alamos, NM, USA, 1994.
- [6] J. Leppanen. Psg2 / serpent a continuous-energy monte carlo reactor physics burnup calculation code. Technical report, VTT Technical Research Centre of Finland, Finland, 2010. http://montecarlo.vtt.fi.
- [7] D. Rochman and A.J. Koning. Pb and Bi neutron data libraries with full covariance evaluation and improved integral tests. Nucl. Inst. And Meth., A 589:85, 2008.
- [8] D. Rochman, A.J. Koning, D.F. da Cruz, P. Archier, and J. Tommasi. On the evaluation of ²³Na neutron-induced reactions and validations. *Nucl. Inst. And Meth.*, A 612:374, 2010.
- [9] D. Rochman, A.J. Koning, S.C. van der Marck, A. Hogenbirk, and D. van Veen. Nuclear data uncertainty propagation: Total Monte Carlo vs. covariance (invited presentation). In proceedings of the International Conference on Nuclear Data for Science and Technology, April 26-30, 2010, Jeju, Korea, Journ. of Korean Phys. Soc., volume 59, page 1236, 2011.
- [10] D. Rochman, A.J. Koning, and S.C. van der Marck. Uncertainties for criticality-safety benchmarks and k_{eff} distributions. Annals of Nuclear Energy, 36:810, 2009.
- [11] A.J. Koning and D. Rochman. Modern nuclear data evaluation: Straight from nuclear physics to applications (plenary presentation). In proceedings of the International Conference on Nuclear Data for Science and Technology, April 26-30, 2010, Jeju, Korea, Journ. of Korean Phys. Soc., volume 59, page 773, 2011.
- [12] D. Rochman, A.J. Koning, and S.C. van der Marck. Exact nuclear data uncertainty propagation for fusion neutronics calculations. *Fusion Engineering and Design*, 85:669, 2010.
- [13] D. Rochman, A.J. Koning, and S.C. van der Marck. Exact nuclear data uncertainty propagation for fusion design. In proceedings of the International Conference on Nuclear Data for Science and Technology, April 26-30, 2010, Jeju, Korea, Journ. of Korean Phys. Soc., volume 59, page 1386, 2011.
- [14] D. Rochman, A.J. Koning, D.F. daCruz, and S.C. van der Marck. Nuclear data uncertainty propagation for a sodium fast reactor. In proceedings of the International Conference on Nuclear Data for Science and Technology, April 26-30, 2010, Jeju, Korea, Journ. of Korean Phys. Soc., volume 59, page 1191, 2011.

- [15] D. Rochman, A.J. Koning, S.C. van der Marck, A. Hogenbirk, and C.M. Sciolla. Nuclear data uncertainty propagation: Monte carlo vs. perturbation. Annals of Nuclear Energy, 38:942, 2011.
- [16] D. Rochman, A.J. Koning, S.C. van der Marck, A. Hogenbirk, and D. van Veen. Nuclear data uncertainty propagation: Total Monte Carlo vs. covariance (invited presentation). In proceedings of the International Conference on Nuclear Data for Science and Technology, April 26-30, 2010, Jeju, Korea, Journ. of Korean Phys. Soc., volume 59, page 1236, 2011.
- [17] D. Rochman, A.J. Koning, and D.F. da Cruz. Uncertainties for the kalimer sodium fast reactor: void coefficient, k_{eff} , β_{eff} , burn-up and radiotoxicity. 2011. accepted in Journal of Nuclear Science and Technology.
- [18] G. Zerovnik, A. Trkov, D. Rochman, and R. Capote-Noy. Influence of resonance parameters correlations on the resonance integral uncertainty; ⁵⁵Mn case. Nucl. Inst. And Meth., A 632:137, 2011.
- [19] D. Rochman and A.J. Koning. How to randomly evaluate nuclear data: a new method applied to ²³⁹Pu. Nucl. Sci. and Eng., 2011. accepted for publication in Nucl. Sci. and Eng.
- [20] D. Rochman and A.J. Koning. Evaluation and adjustement of the neutron-induced reactions of ^{63,65}Cu. Nucl. Sci. And Eng., 170:265, 2012.
- [21] A.J. Koning and D. Rochman. TENDL-2008: Consistent talys-based evaluated nuclear data library including covariance data. Technical Report NEA/WPEC JEF-DOC-1262, NEA Nuclear Data Bank, Paris, France, 2008.
- [22] A.J. Koning and D. Rochman. TENDL-2009: Consistent talys-based evaluated nuclear data library including covariance data. Technical Report NEA/WPEC JEF-DOC-1310, NEA Nuclear Data Bank, Paris, France, 2009.
- [23] A.J. Koning and D. Rochman. TENDL-2010: Consistent talys-based evaluated nuclear data library including covariance data. Technical Report NEA/WPEC JEF-DOC-1349, NEA Nuclear Data Bank, Paris, France, 2010.
- [24] A.J. Koning and D. Rochman. TENDL-2010: Consistent talys-based evaluated nuclear data library including covariance data. Technical report, available at www.talys.eu/tendl-2011, 2011.
- [25] R.E. McFarlane. Njoy99 code system for producing pointwise and multigroug neutron and photon cross sections from endf/b data. Technical Report RSIC PSR-480, Los Alamos National Laboratory, Los Alamos, NM, USA, 2000.
- [26] D. Rochman and C.M. Sciolla. Total monte carlo uncertainty propagation applied to the phase i-1 burnup calculation (a report for the pin-cell physics of tmi-1 pwr unit cell of the oecd/uam working group). Technical report, NRG, Petten, the Netherlands, 2012. NRG Report 113696.
- [27] D. Rochman and A.J. Koning. How to randomly evaluate nuclear data: a new method applied to 239pu. Nucl. Sci. And Eng., 169:68, 2011.
- [28] A.J. Koning, M.C. Duijvestijn, S.C. van der Marck, R. Klein Meulekamp, and A. Hogenbirk. New nuclear data libraries for lead and bismuth and their impact on accelerator-driven systems design. *Nucl. Sci. and Eng.*, 156: 357, 2007.
- [29] A.J. Koning and J.P. Delaroche. Nucl. Phys., A 713:231, 2003.
- [30] H. Henriksson, O. Schwerer, D. Rochman, M.V. Mikhaylyukova, and N. Otuka. The art of collecting experimental data internationally: EXFOR, CINDA and the NRDC network. In proceedings of the International Conference on Nuclear Data for Science and Technology, page 197. Nice, France, April 23-27 2007.
- [31] M.B. Chadwick, P. Obložinský, M. Herman, N.M. Greene, R.D. McKnight, D.L. Smith, P.G. Young, R.E. Mac-Farlane, G.M. Hale, S.C. Frankle, A.C. Kahler, T. Kawano, R.C. Little, D.G. Madland, P. Moller, R.D. Mosteller, P.R. Page, P. Talou, H. Trellue, M.C. White, W.B. Wilson, R. Arcilla, C.L. Dunford, S.F. Mughabghab, B. Pritychenko, D. Rochman, A.A. Sonzogni, C.R. Lubitz, T.H. Trumbull, J.P. Weinman, D.A. Brown, D.E. Cullen, D.P. Heinrichs, D.P. McNabb, H. Derrien, M.E. Dunn, N.M. Larson, L.C. Leal, A.D. Carlson, R.C. Block, J.B.

Briggs, E.T. Cheng, H.C. Huria, M.L. Zerkle, K.S. Kozier, A. Courcelle, V. Pronyaev, and S.C. van der Marck. ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology. *Nuclear Data Sheets*, 107:2931, 2006.

- [32] S.F. Mughabghab. Atlas of Neutron Resonances: Thermal Cross Sections and Resonance Parameters. Elsevier, Amsterdam, 2006.
- [33] P. Talou. Prompt fission neutrons calculations in the madland-nix model. Technical Report LA-UR-07-8168, Los Alamos National Laboratory, Los Alamos, NM, USA, December 2007.
- [34] D.G. Madland and J.R. Nix. Nucl. Sci. and Eng., 81:213, 1982.
- [35] A.C. Wahl. Systematics of fission-product yields. Technical Report LA-13928, Los Alamos National Laboratory, Los Alamos, NM, USA, May 2002.

NZG

Appendix A

Plots of uncertainties for k_∞

Figure A.1: Uncertainties during the burn-up for k_∞ for different reactions and nuclear data quantities.

Appendix B

Plots of uncertainties for reaction rates

Figure B.1: Uncertainties on reaction rate for $^{235}U(n,\gamma)$ for nuclear data quantities.

Figure B.2: Uncertainties on reaction rate for $^{238}\mathrm{U}(\mathrm{n},\gamma)$ for nuclear data quantities

Figure B.3: Uncertainties on reaction rate for $^{239}\mathrm{Pu}(\mathrm{n},\gamma)$ for nuclear data quantities

Figure B.4: Uncertainties on reaction rate for $^{240}Pu(n,\gamma)$ for nuclear data quantities

Figure B.5: Uncertainties on reaction rate for $^{241}Pu(n,\gamma)$ for nuclear data quantities

Figure B.6: Uncertainties on reaction rate for $^{235}U(n,f)$ for nuclear data quantities

Figure B.7: Uncertainties on reaction rate for $^{238}\mathrm{U(n,f)}$ for nuclear data quantities

Figure B.8: Uncertainties on reaction rate for ²³⁹Pu(n,f) for nuclear data quantities

Figure B.9: Uncertainties on reaction rate for 240 Pu(n,f) for nuclear data quantities

Figure B.10: Uncertainties on reaction rate for $^{241}Pu(n,f)$ for nuclear data quantities

Appendix C

Table for nominal values

			Burnup (G	Wd/MTU)		10	
	0	0.2	10	20	30	40	
k∞ 235	1.39	1.35	1.26	1.17	1.09	1.02	•
$rr 238 U_{n,\gamma}$	3.53e + 17	3.56e + 17	3.73e + 17	4.09e + 17	4.56e + 17	5.08e + 17	
$\operatorname{rr}_{220}^{238} U_{n,\gamma}$	3.49e + 16	3.59e + 16	3.88e + 16	4.28e + 16	4.71e + 16	5.15e + 16	
$\operatorname{rr} \frac{239}{240} \operatorname{Pu}_{n,\gamma}$	2.37e + 18	2.40e + 18	2.28e + 18	2.37e + 18	2.56e + 18	2.81e + 18	
$\operatorname{rr} \operatorname{^{240}Pu}_{n,\gamma}$	9.42e + 18	9.76e + 18	7.97e + 18	6.51e + 18	5.88e + 18	5.66e + 18	
$\operatorname{rr}^{241}\operatorname{Pu}_{n,\gamma}$	1.50e + 18	1.51e + 18	1.49e + 18	1.58e + 18	1.74e + 18	1.93e + 18	
$\operatorname{rr} {}^{235}_{235} \mathrm{U}_{n,f}$	1.51e + 18	1.52e + 18	1.56e + 18	1.70e + 18	1.90e + 18	2.13e + 18	
$rr^{238}U_{n,f}$	4.22e + 15	4.37e + 15	$4.81e{+}15$	5.31e + 15	5.80e + 15	6.28e + 15	
$\operatorname{rr}^{239}\operatorname{Pu}_{n,f}$	4.12e + 18	4.16e + 18	4.00e + 18	4.20e + 18	4.57e + 18	5.05e + 18	
$\operatorname{rr}^{240}\operatorname{Pu}_{n,f}$	2.58e + 16	2.67e + 16	2.86e + 16	3.09e + 16	3.33e + 16	3.59e + 16	
$\operatorname{rr}^{241}\operatorname{Pu}_{n,f}$	4.07e + 18	4.09e + 18	4.08e + 18	4.37e + 18	4.82e + 18	5.37e + 18	
Σ_{abs1}	1.06e-2	1.06e-2	1.10e-2	1.13e-2	1.15e-2	1.17e-2	
Σ_{abs2}	1.08e-1	1.12e-1	1.17e-1	1.17e-1	1.15e-1	1.11e-1	
Σ_{fiss1}	3.59e-3	3.58e-3	3.18e-3	2.80e-3	2.47e-3	2.21e-3	
Σ_{fiss2}	7.77e-2	7.65e-2	7.57e-2	7.09e-2	6.49e-2	5.90e-2	
$\nu \Sigma_{fiss1}$	9.08e-3	9.06e-3	8.16e-3	7.32e-3	6.56e-3	5.94e-3	
$\nu \Sigma_{fiss2}$	1.89e-1	1.86e-1	1.91e-1	1.83e-1	1.71e-1	1.58e-1	
D ₁	1.03e+	1.04e +	1.07e+	1.09e +	1.11e+	1.12e +	
D_2	3.65e-1	3.70e-1	3.63e-1	3.61e-1	3.62e-1	3.64e-1	
Σ_{trn1}	3.24e-1	3.20e-1	3.14e-1	3.07e-1	3.02e-1	2.97e-1	
Ltrn2	9.34e-1	9.20e-1	9.35e-1 5.47a 8	9.380-1	9.30e-1 5.20a 8	9.29e-1 5.07a 8	
Inv Vel ₁	0.09e-8	0.09e-8	0.47e-8	0.38e-8	0.32e-8	0.27e-8 2.410.6	
coott on 1 to on 1	2.33e-0	2.32e-0	2.34e-0	2.37e-0	2.39e-0	2.41e-0	•
scatt. gr. 1 to gr. 1	1.06e-1	2.02e-1	2.11o.3	2.10o.3	0.10e-1 2.06o.3	0.11e-1 1.07o 3	
scatt gr 1 to gr 2	1.630-2	1.630-2	1 596-2	1 556-2	1 530-2	1.516-2	
scatt gr. 2 to gr. 2	$1.24e \pm 0$	$1.24e \pm 0$	$1.24e \pm 0$	$1.25e \pm 0$	$1.25e \pm 0$	$1.26e \pm 0$	
ADF, side W, gr. 1	9.85e-1	9.85e-1	9.94e-1	9.94e-1	9.94e-1	9.94e-1	•
ADF, side S, gr. 1	9.85e-1	9.85e-1	9.94e-1	9.94e-1	9.94e-1	9.94e-1	
ADF, side E, gr. 1	9.85e-1	9.85e-1	9.94e-1	9.94e-1	9.94e-1	9.94e-1	
ADF, side N, gr. 1	9.85e-1	9.85e-1	9.94e-1	9.94e-1	9.94e-1	9.94e-1	
ADF, side W, gr. 2	9.47e-1	9.47e-1	9.62e-1	9.59e-1	9.57e-1	9.54e-1	
ADF, side S, gr. 2	9.47e-1	9.47e-1	9.62e-1	9.59e-1	9.57e-1	9.54e-1	
ADF, side E, gr. 2	9.47e-1	9.47e-1	9.62e-1	9.59e-1	9.57e-1	9.54e-1	
ADF, side N, gr. 2	9.47e-1	9.47e-1	9.62e-1	9.59e-1	9.57e-1	9.54e-1	
$N_d ^{234}U$	1.26e-6	1.26e-6	1.13e-6	1.01e-6	9.01e-7	8.04e-7	
$N_d \xrightarrow{235} U$	1.13e-3	1.12e-3	8.71e-4	6.62e-4	4.89e-4	3.56e-4	
N_d ²³⁶ U	0.00	1.08e-6	4.77e-5	8.50e-5	1.14e-4	1.34e-4	
N_d ²³⁸ U	2.18e-2	2.18e-2	2.17e-2	2.16e-2	2.14e-2	2.13e-2	
N_d ²³⁷ Np	0.00	2.38e-9	1.55e-6	4.58e-6	8.35e-6	1.21e-5	
N_d ²³⁸ Pu	0.00	9.28e-13	1.06e-7	6.48e-7	1.86e-6	3.71e-6	
N_d ²³⁹ Pu	0.00	9.13e-7	7.35e-5	1.11e-4	1.29e-4	1.36e-4	
N_d ²⁴⁰ Pu	0.00	3.40e-9	8.86e-6	2.33e-5	3.81e-5	5.08e-5	
N_d ²⁴¹ Pu	0.00	2.64e-11	3.21e-6	1.24e-5	2.28e-5	3.10e-5	
N _d ²⁴² Pu	0.00	2.48e-14	1.84e-7	1.61e-6	4.95e-6	9.79e-6	
$N_d^{-241}Am$	0.00	3.57e-15	2.41e-8	1.81e-7	4.61e-7	7.42e-7	
N_d^{-243} Am	0.00	1.17e-17	7.33e-9	1.42e-7	6.80e-7	1.78e-6	
N_d^{242} Cm	0.00	3.01e-18	2.30e-9	3.45e-8	1.31e-7	2.79e-7	
N _d ²⁴⁴ Cm	0.00	5.36e-21	3.95e-10	1.72e-8	1.36e-7	5.05e-7	
	0.00	3.000 11	5.000 10	11120 0	1.0001	5.000 .	1

Table C.1: Nominal values

	Table C	.1 - continu	ed from pr	evious page		
			Burnup (G	Wd/MTU)		
	0	0.2	10	20	30	40
$N_d \stackrel{90}{_{\circ}}Sr$	0.00	2.85e-7	1.32e-5	2.48e-5	3.52e-5	4.38e-5
$N_d \stackrel{95}{_{-00}} Mo$	0.00	2.21e-10	6.92e-6	2.09e-5	3.48e-5	4.71e-5
$N_d {}^{99}Tc$	0.00	1.11e-7	1.49e-5	2.94e-5	4.30e-5	5.49e-5
$N_d \stackrel{101}{\longrightarrow} Ru$	0.00	2.53e-7	1.28e-5	2.56e-5	3.83e-5	5.01e-5
$N_d \stackrel{103}{\longrightarrow} Rh$	0.00	5.57e-9	5.57e-6	1.27e-5	1.93e-5	2.48e-5
N_d ¹⁰⁹ Ag	0.00	8.58e-10	2.44e-7	7.67e-7	1.48e-6	2.29e-6
N_d ¹²⁹ I	0.00	1.67e-8	1.37e-6	3.14e-6	5.10e-6	7.07e-6
N_d ¹³³ Xe	0.00	2.10e-8	6.12e-6	1.17e-5	1.64e-5	2.00e-5
N_d ¹³⁵ Xe	0.00	1.25e-8	1.25e-8	1.18e-8	1.09e-8	9.98e-9
N_d ¹³³ Cs	0.00	4.50e-8	1.46e-5	2.86e-5	4.15e-5	5.25e-5
N_d ¹³⁴ Cs	0.00	1.96e-11	4.38e-7	1.70e-6	3.63e-6	5.93e-6
N_d ¹³⁷ Cs	0.00	3.21e-7	1.59e-5	3.16e-5	4.71e-5	6.15e-5
N_d ¹⁴⁴ Ce	0.00	2.70e-7	1.01e-5	1.54e-5	1.81e-5	1.94e-5
N_d ¹⁴² Nd	0.00	2.70e-13	3.35e-8	1.70e-7	4.30e-7	8.06e-7
N_d ¹⁴³ Nd	0.00	1.44e-8	1.21e-5	2.34e-5	3.26e-5	3.92e-5
N_d ¹⁴⁴ Nd	0.00	1.53e-9	3.77e-6	1.32e-5	2.65e-5	4.14e-5
N_d ¹⁴⁵ Nd	0.00	1.83e-7	9.45e-6	1.81e-5	2.60e-5	3.27e-5
N_d ¹⁴⁶ Nd	0.00	1.57e-7	8.01e-6	1.63e-5	2.51e-5	3.37e-5
N_d ¹⁴⁸ Nd	0.00	8.90e-8	4.48e-6	8.92e-6	1.33e-5	1.75e-5
N_d ¹⁴⁷ Sm	0.00	1.60e-11	3.25e-7	1.13e-6	2.10e-6	2.99e-6
N_d ¹⁴⁹ Sm	0.00	1.95e-8	1.11e-7	1.20e-7	1.20e-7	1.16e-7
N_d ¹⁵⁰ Sm	0.00	4.62e-9	2.83e-6	6.29e-6	1.00e-5	1.37e-5
N_d ¹⁵¹ Sm	0.00	1.52e-8	4.29e-7	5.10e-7	5.59e-7	5.94e-7
N_d ¹⁵² Sm	0.00	1.42e-8	1.37e-6	2.74e-6	3.84e-6	4.68e-6
N_d ¹⁵³ Eu	0.00	4.02e-9	6.73e-7	1.90e-6	3.43e-6	4.94e-6
N_d ¹⁵⁴ Eu	0.00	8.78e-12	6.12e-8	2.65e-7	5.86e-7	9.37e-7
N_d ¹⁵⁵ Eu	0.00	1.66e-9	4.35e-8	1.07e-7	2.11e-7	3.33e-7
N_d ¹⁵⁵ Gd	0.00	1.39e-12	3.67e-10	8.87e-10	1.68e-9	2.47e-9
N_d ¹⁵⁶ Gd	0.00	5.48e-11	1.34e-7	5.12e-7	1.31e-6	2.64e-6
N_d ¹⁵⁷ Gd	0.00	1.75e-10	1.45e-9	2.35e-9	3.37e-9	4.51e-9
N_d ¹⁵⁸ Gd	0.00	1.83e-10	5.32e-8	1.67e-7	3.50e-7	6.06e-7

Table C.2:	Relative p	bower p	er pin,	central	values

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14 15	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8.23e-1 8.49e-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.48e-1 8.23e-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8.80e-1 8.86e-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.60e-1 9.37e-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.01e + 0 $9.59e - 1$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.06e + 0 9.70e-1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.01e+0 9.70e-1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9.93e-1 9.73e-1	
$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 79 = 1 \\ 0 \\ 11 \\ 9 \\ 57 = 1 \\ 10 \\ 11 \\ 0 \\ 57 = 1 \\ 10 \\ 10 \\ 11 \\ 0 \\ 57 = 1 \\ 10 \\ 10 \\ 10 \\ 11 \\ 0 \\ 57 = 1 \\ 10 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 11 \\ 10 \\ 1$	1.01e+0 9.76e-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.05e\pm0$ 9.75e-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.000 + 0 $9.58e-1$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.02e-1 9.22e-1 9.72e-1 9.92e-1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.72e-1 0.82e-1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3.47e-1 8.22e-1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8.24e-1 8.44e-1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 15	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8.22e-1 8.42e-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.62e-1 8.27e-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8.76e-1 8.84e-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.60e-1 9.35e-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.01e+0 9.62e-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.05e+0 9.76e-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.01e+0 9.74e-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.80e-1 9.66e-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.01e+0 9.73e-1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.05e+0 9.79e-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.00e+0 9.56e-1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.60e-1 9.33e-1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.72e-1 8.78e-1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3.63e-1 8.29e-1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8 25e-1 8 46e-1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	012001 011001	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 15	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 130 1 0 060 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.13e-1 9.00e-1 9.27c 1 0.08c 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.376-1 9.086-1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.50e-1 9.15e-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.000-1 9.300-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.676-1 9.486-1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.04e+0 9.54e-1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.84e-1 9.42e-1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.60e-1 9.42e-1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.86e-1 9.41e-1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.04e + 0 9.57e-1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.86e-1 9.45e-1	
$13 \qquad 9.15e-1 \qquad 9.36e-1 \qquad 9.83e-1 \qquad 1.05e+0 \qquad 1.08e+0 \qquad 0.00e+0 \qquad 1.05e+0 \qquad 9.88e-1 \qquad 1.04e+0 \qquad 0.00e+0 \qquad 1.08e+0 \qquad 9.78e-1 \qquad 1.06e+0 \qquad 9.78e-1 \qquad 1.06e+0 \qquad$	9.62e-1 9.30e-1	
	9.35e-1 9.21e-1	
$14 \qquad 9.11e-1 \qquad 8.34e-1 \qquad 9.34e-1 \qquad 9.62e-1 \qquad 9.91e-1 \qquad 1.03e+0 \qquad 9.86e-1 \qquad 9.61e-1 \qquad 9.85e-1 \qquad 1.03e+0 \qquad 9.93e-1 \qquad 9.60e-1 \qquad 9.34e-1 \qquad 9.85e-1 \qquad$	8.38e-1 9.10e-1	
15 9.01e-1 9.10e-1 9.21e-1 9.34e-1 9.40e-1 9.61e-1 9.54e-1 9.43e-1 9.42e-1 9.51e-1 9.51e-1 9.51e-1 9.33e-1 9.21e-1	9.14e-1 9.04e-1	
Burnup 20.0GW / MTU		A COLUMN A
pin nr. 1 2 3 4 5 6 7 8 9 10 11 12 13	14 15	
1 8.98e-1 9.05e-1 9.15e-1 9.26e-1 9.45e-1 9.59e-1 9.39e-1 9.39e-1 9.50e-1 9.51e-1 9.45e-1 9.29e-1 9.21e-1	9.08e-1 9.03e-1	
2 9.07e-1 8.62e-1 9.36e-1 9.67e-1 9.95e-1 1.03e+0 9.81e-1 9.57e-1 9.82e-1 1.04e+0 9.93e-1 9.60e-1 9.33e-1	8.63e-1 9.12e-1	and the second
$3 \qquad 9.15e-1 \qquad 9.37e-1 \qquad 9.80e-1 \qquad 1.06e+0 \qquad 1.08e+0 \qquad 0.00e+0 \qquad 1.04e+0 \qquad 9.72e-1 \qquad 1.04e+0 \qquad 0.00e+0 \qquad 1.08e+0 \qquad 1.05e+0 \qquad 9.82e-1 \qquad 0.00e+0 \qquad $	9.30e-1 9.13e-1	
$4 \qquad 9.30e-1 \qquad 9.61e-1 \qquad 1.05e+0 \qquad 0.00e+0 \qquad 1.11e+0 \qquad 1.08e+0 \qquad 1.02e+0 \qquad 9.82e-1 \qquad 1.02e+0 \qquad 1.02e+0 \qquad 1.11e+0 \qquad 0.00e+0 \qquad 1.06e+0 \qquad $	9.59e-1 9.22e-1	
$5 \qquad 9 \qquad 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9$	9.85e-1 9.44e-1	
6 0.500-1 1.030-1 0.000-1 0.800-1 0.000-0 0.000-0 1.000-0 1.020-0 1.020-0 1.000-0 1.000-0 1.000-0 1.000-0 0.000-0	1.030 ± 0 9.540-1	
7 0.400-1 0.80-1 1.050-1 1.050-1 1.030-1 1.030-1 1.050-1 1.050-1 1.070-1 1.070-1 1.050-1 1.030-1 1.050	$0.82e_1$ $0.45e_1$	Constant of the local division of the local
1 0.430-1 0.500-1 1.000-0 0 0.000-0 000-000-000-000-000-000	3.040-1 9.400-1	1

						Table C.2	– continu	ed from p	revious pa	ge					
8	9.43e-1	9.63e-1	9.87e-1	9.89e-1	9.93e-1	1.02e + 0	1.08e + 0	0.00e+0	1.08e + 0	1.03e+0	9.92e-1	9.89e-1	9.93e-1	9.60e-1	9.39e-1
9	9.43e-1	9.90e-1	1.04e + 0	1.02e + 0	1.03e + 0	1.08e + 0	1.06e + 0	1.08e + 0	1.06e + 0	1.07e + 0	1.03e + 0	1.02e + 0	1.04e + 0	9.83e-1	9.40e-1
10	9.61e-1	1.03e + 0	0.00e + 0	1.08e + 0	1.08e + 0	0.00e + 0	1.07e + 0	1.02e + 0	1.07e + 0	0.00e + 0	1.09e + 0	1.09e + 0	0.00e + 0	1.04e + 0	9.53e-1
11	9.42e-1	9.85e-1	1.09e + 0	1.11e + 0	1.07e + 0	1.09e + 0	1.02e + 0	9.92e-1	1.03e + 0	1.10e + 0	1.08e + 0	1.11e + 0	1.08e + 0	9.87e-1	9.49e-1
12	9.30e-1	9.64e-1	1.05e + 0	0.00e + 0	1.10e + 0	1.09e + 0	1.01e + 0	9.89e-1	1.02e + 0	1.09e + 0	1.11e + 0	0.00e + 0	1.06e + 0	9.58e-1	9.34e-1
13	9.16e-1	9.34e-1	9.74e-1	1.05e + 0	1.09e + 0	0.00e + 0	1.04e + 0	9.89e-1	1.04e + 0	0.00e + 0	1.09e + 0	1.06e + 0	9.79e-1	9.43e-1	9.16e-1
14	8.99e-1	8.60e-1	9.41e-1	9.56e-1	9.93e-1	1.03e + 0	9.87e-1	9.58e-1	9.85e-1	1.04e + 0	9.91e-1	9.62e-1	9.35e-1	8.62e-1	9.07e-1
15	9.00e-1	9.07e-1	9.11e-1	9.36e-1	9.43e-1	9.53e-1	9.38e-1	9.41e-1	9.42e-1	9.50e-1	9.43e-1	9.30e-1	9.18e-1	9.12e-1	9.00e-1
							Burnu	p 30.0GW	/ MTU						
pin nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	8.96e-1	9.04e-1	9.18e-1	9.30e-1	9.39e-1	9.55e-1	9.45e-1	9.40e-1	9.52e-1	9.53e-1	9.45e-1	9.33e-1	9.16e-1	9.02e-1	9.03e-1
2	9.09e-1	8.81e-1	9.31e-1	9.65e-1	9.87e-1	1.03e + 0	9.87e-1	9.63e-1	9.88e-1	1.03e + 0	9.95e-1	9.63e-1	9.27e-1	8.81e-1	9.10e-1
3	9.25e-1	9.28e-1	9.77e-1	1.05e + 0	1.08e + 0	0.00e + 0	1.04e + 0	9.89e-1	1.05e + 0	0.00e + 0	1.08e + 0	1.05e + 0	9.76e-1	9.26e-1	9.16e-1
4	9.36e-1	9.58e-1	1.05e + 0	0.00e + 0	1.11e + 0	1.09e + 0	1.02e + 0	9.83e-1	1.02e + 0	1.09e + 0	1.11e + 0	0.00e + 0	1.05e+0	9.59e-1	9.37e-1
5	9.48e-1	9.94e-1	1.09e + 0	1.12e + 0	1.07e + 0	1.10e + 0	1.02e + 0	9.99e-1	1.03e + 0	1.09e + 0	1.08e + 0	1.11e + 0	1.07e + 0	9.89e-1	9.34e-1
6	9.53e-1	1.03e+0	0.00e + 0	1.09e + 0	1.09e + 0	0.00e + 0	1.08e + 0	1.03e+0	1.08e + 0	0.00e + 0	1.09e + 0	1.09e + 0	0.00e + 0	1.02e + 0	9.53e-1
7	9.53e-1	9.87e-1	1.04e + 0	1.01e + 0	1.03e+0	1.07e + 0	1.05e + 0	1.08e + 0	1.06e + 0	1.07e + 0	1.03e + 0	1.02e + 0	1.04e + 0	9.86e-1	9.44e-1
8	9.40e-1	9.62e-1	9.85e-1	9.88e-1	1.00e+0	1.03e + 0	1.07e + 0	0.00e+0	1.09e + 0	1.02e + 0	1.00e+0	9.94e-1	9.84e-1	9.56e-1	9.46e-1
9	9.38e-1	9.83e-1	1.05e + 0	1.02e + 0	1.03e+0	1.07e + 0	1.06e + 0	1.09e + 0	1.06e + 0	1.07e + 0	1.03e + 0	1.01e + 0	1.03e + 0	9.82e-1	9.41e-1
10	9.55e-1	1.03e+0	0.00e + 0	1.09e + 0	1.09e+0	0.00e + 0	1.07e + 0	1.03e+0	1.07e + 0	0.00e + 0	1.08e + 0	1.09e + 0	0.00e + 0	1.03e + 0	9.54e-1
11	9.46e-1	9.89e-1	1.08e + 0	1.10e + 0	1.07e + 0	1.09e + 0	1.03e+0	9.94e-1	1.02e + 0	1.09e + 0	1.07e + 0	1.10e + 0	1.08e + 0	9.87e-1	9.46e-1
12	9.28e-1	9.66e-1	1.05e + 0	0.00e + 0	1.11e+0	1.09e + 0	1.02e + 0	9.87e-1	1.02e + 0	1.09e + 0	1.11e + 0	0.00e + 0	1.05e + 0	9.60e-1	9.36e-1
13	9.13e-1	9.32e-1	9.77e-1	1.05e + 0	1.08e + 0	0.00e + 0	1.05e + 0	9.83e-1	1.04e + 0	0.00e + 0	1.08e + 0	1.05e+0	9.76e-1	9.37e-1	9.18e-1
14	8.99e-1	8.79e-1	9.36e-1	9.57e-1	9.91e-1	1.02e + 0	9.86e-1	9.63e-1	9.85e-1	1.03e + 0	9.88e-1	9.62e-1	9.35e-1	8.79e-1	9.04e-1
15	8.97e-1	9.00e-1	9.09e-1	9.32e-1	9.34e-1	9.50e-1	9.32e-1	9.41e-1	9.45e-1	9.53e-1	9.41e-1	9.30e-1	9.19e-1	9.00e-1	8.99e-1
		2	0		_	2	_	shutdown	0	10		10	10		
pin nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	8.96e-1	9.07e-1	9.21e-1	9.27e-1	9.45e-1	9.56e-1	9.43e-1	9.39e-1	9.44e-1	9.54e-1	9.48e-1	9.33e-1	9.12e-1	9.09e-1	8.99e-1
2	8.98e-1	9.01e-1	9.34e-1	9.63e-1	9.87e-1	1.03e+0	9.82e-1	9.63e-1	9.87e-1	1.03e+0	9.92e-1	9.60e-1	9.27e-1	8.97e-1	9.01e-1
3	9.10e-1	9.38e-1	9.80e-1	1.05e+0	1.08e+0	0.00e+0	1.04e+0	9.92e-1	1.04e+0	0.00e+0	1.08e+0	1.05e+0	9.80e-1	9.30e-1	9.09e-1
4	9.27e-1	9.59e-1	1.05e+0 1.07.+0	0.00e+0	1.11e+0 1.07.+0	1.09e+0	1.01e+0	9.85e-1	1.01e+0 1.02i+0	1.09e + 0	1.11e+0	0.00e+0	1.06e + 0	9.57e-1	9.29e-1
o c	9.51e-1	9.89e-1	1.07e+0	1.11e+0	1.07e+0	1.09e + 0	1.03e+0 $1.07.\pm0$	9.94e-1	1.02e+0 1.07.+0	1.09e + 0	1.08e + 0	1.11e+0 1.00+0	1.08e + 0	9.94e-1	9.44e-1
0 7	9.50e-1	1.03e+0	0.00e+0	1.08e+0 1.02e+0	1.09e+0 1.02e+0	0.00e+0 1.07e+0	1.07e+0 1.05e+0	1.03e+0	1.07e+0 1.06e+0	0.00e+0 1.07e+0	1.09e + 0 1.02e + 0	1.09e + 0 1.02e + 0	0.00e+0	1.03e+0	9.53e-1
1	9.49e-1	9.79e-1	$1.04e \pm 0$	1.02e+0	1.02e+0	1.07e+0 1.02e+0	1.03e+0	1.08e+0	1.00e+0	1.07e+0 1.02e+0	1.03e+0	1.02e+0	$1.04e \pm 0$	9.000-1	9.55e-1
0	9.346-1	9.000-1	9.90e-1	9.90e-1	9.93e=1	1.03e+0 1.07e+0	$1.06e \pm 0$	1.08 ± 0	1.06e + 0	1.03e+0	9.95e=1	9.89e=1	9.95e-1	9.03e-1	9.400-1
9	9.59e-1	9.63e-1	1.05e+0	1.02e+0 1.00e+0	1.03e+0	1.07e+0	1.00e+0 1.07e+0	1.08e+0 1.02e+0	1.00e+0	$1.08e \pm 0$	1.02e+0	1.01e+0	$1.04e \pm 0$	9.64e-1	9.42e-1 0.55o.1
10	9.00e-1 0.430 1	1.030 ± 0	1.000 ± 0	1.09e+0	1.090 ± 0	1.00e+0	1.07e+0 1.03o+0	1.03e+0	1.000 ± 0	1.080 ± 0	1.090 ± 0	1.000+0	1.080 ± 0	1.020+0	9.00e-1 0.44o 1
12	0.20o 1	9.910-1 0.670 1	1.07e+0 1.05e+0	1.100+0	1.07e+0	1.09e+0	1.03e+0	0.040^{-1}	1.03e+0	1.000 ± 0	1.07e+0	1.100 ± 0	1.060 ± 0	0.630 1	0.246-1
12	9.29e-1 0.11o 1	0.300 1	0.700^{-1}	1.050 ± 0	1.100+0	1.090+0	1.02e+0	9.94e-1 0.850 1	1.02e+0 1.04e+0	1.090 ± 0	1.110+0	1.050 ± 0	0.870^{-1}	0.350 1	0.120-1
14	9.020-1	8 980-1	9.790-1	9.600-1	9.80 - 1	$1.03e\pm0$	$9.76e^{-1}$	9.616-1	9.696-1	$1.03e\pm0$	9.910^{-1}	9.660-1	0.350-1	8.040-1	9.12e-1 9.04e-1
15	9.020-1	0.080-1	9.550-1	9.000-1	0 30o-1	1.030 ± 0 0.520-1	9.510-1	9.010-1	9.090-1	9.470^{-1}	9.910-1	9.000-1	0.130-1	8 000-1	8 960-1
10	5.010-1	5.000-1	0.110-1	0.010-1	0.000-1	0.020-1	0.010-1	0.000-1	0.120-1	0.110-1	0.410-1	0.040-1	5.100-1	0.000-1	5.500-1

Appendix D

Tables for uncertainties from variations of 235 U nuclear data

		I	Burnup (G	Wd/MTU	J)	
	0	0.2	10	20	30	40
k_{∞}	0.560	0.530	0.442	0.405	0.369	0.338
rr 235 U $_{n,\gamma}$	2.040	2.020	2.000	2.040	2.080	2.130
rr 238 U _{n,γ}	0.870	0.800	0.700	0.680	0.590	0.530
rr 239 Pu _{n,\gamma}	1.270	1.270	0.950	0.840	0.840	0.740
rr 240 Pu _{n,\gamma}	0.470	0.820	0.000	0.110	0.190	0.590
rr 241 Pu _{n,\gamma}	1.390	1.410	1.030	0.930	0.880	0.780
${\rm rr}^{235}{\rm U}_{n,f}$	0.560	0.580	0.570	0.640	0.740	0.880
${ m rr}^{238}{ m U}_{n,f}$	7.170	7.180	5.410	4.320	3.480	2.850
rr 239 Pu _{n,f}	1.320	1.320	1.010	0.890	0.850	0.770
rr 240 Pu _{n,f}	2.940	2.980	2.310	1.870	1.570	1.270
rr 241 Pu _{n,f}	1.390	1.400	1.060	0.940	0.870	0.790
Σ_{abs1}	0.910	0.840	0.760	0.650	0.520	0.470
Σ_{abs2}	1.090	1.070	0.840	0.720	0.610	0.580
Σ_{fiss1}	1.560	1.570	1.630	1.630	1.540	1.440
Σ_{fiss2}	1.680	1.680	1.370	1.220	1.060	0.980
$\nu \Sigma_{fiss1}$	1.740	1.750	1.750	1.700	1.580	1.470
$\nu \Sigma_{fiss2}$	1.670	1.670	1.300	1.140	0.980	0.910
D_1	2.000	2.090	1.620	1.270	1.020	0.830
D_2	1.000	1.020	0.940	0.830	0.820	0.840
Σ_{trn1}	2.060	2.140	1.690	1.340	1.110	0.950
Σ_{trn2}	0.510	0.690	0.420	0.230	0.350	0.430
$InvVel_1$	1.440	1.420	1.110	0.930	0.800	0.660
$InvVel_2$	0.190	0.180	0.170	0.170	0.130	0.140
scatt. gr. 1 to gr. 1	9.50e-1	9.40e-1	7.30e-1	5.90e-1	4.80e-1	4.00e-1
scatt. gr. 2 to gr. 1	2.74	3.48	3.10	2.72	3.03	3.21
scatt. gr. 1 to gr. 2 $$	1.41	1.41	1.17	9.60e-1	8.00e-1	6.70e-1
scatt. gr. 2 to gr. 2 $$	-	-	-	-	-	-
ADF, side W, gr. 1	1.50e-1	-	2.60e-1	2.20e-1	1.20e-1	1.70e-1
ADF, side S, gr. 1	1.50e-1	-	2.60e-1	2.20e-1	1.20e-1	1.70e-1
ADF, side E, gr. 1	1.50e-1	-	2.60e-1	2.20e-1	1.20e-1	1.70e-1
ADF, side N, gr. 1	1.50e-1	-	2.60e-1	2.20e-1	1.20e-1	1.70e-1
ADF, side W, gr. 2	4.90e-1	5.30e-1	4.30e-1	3.90e-1	-	4.70e-1
				Conti	nued on n	ext page

Table D.1: Results of variations in the $^{235}\mathrm{U}$ nuclear data; Uncertainties (%)

Table D.1 – continued from previous page									
		Η	Burnup (G	Wd/MTU)				
	0	0.2	10	20	30	40			
ADF, side S, gr. 2	4.90e-1	5.30e-1	4.30e-1	3.90e-1	-	4.70e-1			
ADF, side E, gr. 2	4.90e-1	5.30e-1	4.30e-1	3.90e-1	-	4.70e-1			
ADF, side N, gr. 2	4.90e-1	5.30e-1	4.30e-1	3.90e-1	-	4.70e-1			
N_d ²³⁴ U	0.000	0.015	0.666	1.149	1.570	1.826			
N_d ²³⁵ U	0.000	0.003	0.155	0.317	0.512	0.740			
N_d ²³⁶ U	0.000	2.031	1.932	1.895	1.868	1.857			
N_d ²³⁸ U	0.000	0.000	0.005	0.009	0.012	0.015			
N_d ²³⁷ Np	0.000	35.898	10.659	6.150	4.395	3.486			
N_d ²³⁸ Pu	0.000	35.913	13.730	8.012	5.558	4.273			
N_d ²³⁹ Pu	0.000	0.886	0.414	0.305	0.285	0.325			
N_d ²⁴⁰ Pu	0.000	1.936	1.334	1.076	0.893	0.679			
N_d ²⁴¹ Pu	0.000	2.661	1.694	1.056	0.757	0.555			
N_d ²⁴² Pu	0.000	3.882	2.993	2.217	1.743	1.475			
N_d ²⁴¹ Am	0.000	2.643	1.812	1.061	0.643	0.416			
N_d ²⁴³ Am	0.000	4.929	3.812	3.124	2.648	1.954			
N_d ²⁴² Cm	0.000	3.635	2.788	2.024	1.485	1.097			
N_d ²⁴⁴ Cm	0.000	5.655	4.651	3.726	3.283	2.649			
N_d ⁹⁰ Sr	0.000	0.439	0.371	0.333	0.307	0.286			
N_d ⁹⁵ Mo	0.000	0.388	0.347	0.306	0.274	0.250			
N_d ⁹⁹ Tc	0.000	0.373	0.320	0.279	0.249	0.222			
N_d ¹⁰¹ Ru	0.000	0.374	0.334	0.302	0.276	0.252			
N_d ¹⁰³ Rh	0.000	0.484	0.422	0.366	0.317	0.283			
N_d ¹⁰⁹ Ag	0.000	1.463	1.223	1.140	0.970	0.899			
N_d ¹²⁹ I	0.000	0.373	0.362	0.351	0.337	0.319			
N_d ¹³³ Xe	0.000	0.379	0.324	0.288	0.286	0.296			
N_d ¹³⁵ Xe	0.000	1.249	0.991	0.846	0.724	0.703			
$N_d \stackrel{133}{\sim} Cs$	0.000	0.371	0.316	0.275	0.258	0.227			
$N_d \stackrel{134}{\sim} Cs$	0.000	1.476	0.935	0.959	0.822	0.718			
$N_d \stackrel{137}{\sim} Cs$	0.000	0.373	0.332	0.303	0.278	0.256			
$N_d {}^{144}_{142} Ce$	0.000	0.389	0.329	0.285	0.247	0.211			
$N_d \stackrel{142}{\longrightarrow} Nd$	0.000	1.369	1.110	1.039	0.937	0.875			
N_d ¹⁴³ Nd	0.000	0.397	0.337	0.315	0.317	0.335			
N_d ¹⁴⁴ Nd	0.000	0.419	0.471	0.439	0.414	0.391			
$N_d \stackrel{145}{_{146}} Nd$	0.000	0.373	0.315	0.277	0.256	0.231			
$N_d \stackrel{140}{148} Nd$	0.000	0.371	0.335	0.315	0.291	0.279			
N_d ¹⁴⁸ Nd	0.000	0.383	0.344	0.314	0.289	0.266			
$N_d \stackrel{147}{_{140}} Sm$	0.000	0.369	0.311	0.296	0.340	0.353			
$N_d \stackrel{149}{=} Sm$	0.000	0.512	1.276	1.104	0.912	0.895			
$N_d \frac{150}{151} Sm$	0.000	1.603	0.411	0.388	0.358	0.327			
$N_d = 152 \text{ sm}$	0.000	0.474	0.977	0.826	0.639	0.555			
$N_d = 15^2 Sm$	0.000	0.581	0.630	0.604	0.615	0.616			
$N_d = 153 Eu$	0.000	0.606	0.603	0.610	0.527	0.499			
$N_d = 154 Eu$	0.000	1.125	0.910	0.880	0.666	0.629			
N_d ¹⁵⁵ Eu	0.000	1.132	0.634	0.779	0.790	0.728			
N_d ¹⁵⁵ Gd	0.000	1.142	1.430	0.943	0.856	0.896			
$N_d \stackrel{150}{=} Gd$	0.000	1.268	0.932	0.998	1.069	1.034			
$N_d \stackrel{15}{=} Gd$	0.000	1.584	0.901	0.672	0.584	0.646			
N_d ¹⁵⁸ Gd	0.000	2.089	1.052	1.006	1.003	1.011			

Appendix E

Tables for uncertainties from variations of 238 U nuclear data

		I	Burnup (G	Wd/MTU	J)	
	0	0.2	10	20	30	40
k_{∞}	0.414	0.420	0.421	0.419	0.352	0.308
$\operatorname{rr}^{235} \operatorname{U}_{n,\gamma}$	0.050	0.120	0.260	0.530	0.830	1.210
rr 238 U _{n,γ}	1.570	1.600	1.520	1.500	1.300	1.070
rr 239 Pu _{n,\gamma}	0.160	0.000	0.480	0.790	1.190	1.550
rr 240 Pu _{n,\gamma}	0.000	0.000	0.490	0.750	1.200	1.200
rr 241 Pu _{n,\gamma}	0.150	0.030	0.470	0.740	1.150	1.580
$\operatorname{rr}^{235}\operatorname{U}_{n,f}$	0.100	0.100	0.360	0.690	1.030	1.470
${ m rr}^{238}{ m U}_{n,f}$	1.740	1.800	1.710	1.710	1.640	1.660
$\operatorname{rr}^{239}\operatorname{Pu}_{n,f}$	0.140	0.000	0.460	0.800	1.180	1.570
$\operatorname{rr}^{240}\operatorname{Pu}_{n,f}$	0.640	0.640	0.650	0.640	0.520	0.460
rr 241 Pu _{n,f}	0.110	0.060	0.430	0.730	1.120	1.560
Σ_{abs1}	0.730	0.710	0.740	0.810	0.840	0.860
Σ_{abs2}	0.260	0.220	0.360	0.610	0.860	1.090
Σ_{fiss1}	0.450	0.450	0.490	0.550	0.690	0.900
Σ_{fiss2}	0.290	0.230	0.320	0.580	0.890	1.240
$\nu \Sigma_{fiss1}$	0.970	0.980	1.040	1.180	1.340	1.610
$\nu \Sigma_{fiss2}$	0.280	0.230	0.340	0.630	0.950	1.290
D_1	0.730	0.760	0.720	0.740	0.710	0.680
D_2	2.340	2.340	2.320	2.130	2.150	1.990
Σ_{trn1}	0.830	0.860	0.840	0.860	0.850	0.820
Σ_{trn2}	2.160	2.200	2.210	2.060	2.040	1.880
$InvVel_1$	0.430	0.470	0.480	0.470	0.530	0.560
$InvVel_2$	0.110	0.110	0.130	0.130	0.130	0.160
scatt. gr. 1 to gr. 1	1.11	1.12	1.09	1.07	1.05	1.05
scatt. gr. 2 to gr. 1	3.36	2.69	3.12	3.41	3.51	3.55
scatt. gr. 1 to gr. 2 $$	4.10e-1	4.40e-1	4.30e-1	4.90e-1	5.30e-1	5.50e-1
scatt. gr. 2 to gr. 2 $$	1.05	1.03	1.08	1.06	1.03	1.03
ADF, side W, gr. 1	1.60e-1	1.80e-1	1.10e-1	2.40e-1	1.10e-1	-
ADF, side S, gr. 1	1.60e-1	1.80e-1	1.10e-1	2.40e-1	1.10e-1	-
ADF, side E, gr. 1	1.60e-1	1.80e-1	1.10e-1	2.40e-1	1.10e-1	-
ADF, side N, gr. 1	1.60e-1	1.80e-1	1.10e-1	2.40e-1	1.10e-1	-
ADF, side W, gr. 2	3.50e-1	2.60e-1	4.60e-1	5.50e-1	1.70e-1	3.70e-1
				Conti	nued on n	ext page

Table E.1: Results of variations in the $^{238}\mathrm{U}$ nuclear data; Uncertainties (%)

Table E.1 – continued from previous page										
		I	Burnup (G	Wd/MTU	J)					
	0	0.2	10	20	30	40				
ADF, side S, gr. 2	3.50e-1	2.60e-1	4.60e-1	5.50e-1	1.70e-1	3.70e-1				
ADF, side E, gr. 2	3.50e-1	2.60e-1	4.60e-1	5.50e-1	1.70e-1	3.70e-1				
ADF, side N, gr. 2	3.50e-1	2.60e-1	4.60e-1	5.50e-1	1.70e-1	3.70e-1				
N_d ²³⁴ U	0.000	0.003	0.063	0.145	0.237	0.348				
$N_d \stackrel{235}{} U$	0.000	0.001	0.052	0.187	0.445	0.852				
N_d ²³⁶ U	0.000	0.121	0.153	0.212	0.248	0.258				
N_d ²³⁸ U	0.000	0.000	0.008	0.016	0.024	0.031				
N_d ²³⁷ Np	0.000	3.949	1.556	1.106	0.940	0.832				
N_d ²³⁸ Pu	0.000	3.623	1.875	1.359	1.057	0.971				
N_d ²³⁹ Pu	0.000	1.611	1.695	1.892	2.116	2.339				
N_d ²⁴⁰ Pu	0.000	1.598	1.432	1.483	1.613	1.767				
N_d ²⁴¹ Pu	0.000	1.867	1.237	1.202	1.224	1.364				
N_d ²⁴² Pu	0.000	1.823	1.076	0.714	0.420	0.378				
N_d ²⁴¹ Am	0.000	1.872	1.399	1.311	1.467	1.856				
N_d ²⁴³ Am	0.000	2.631	1.322	1.424	1.396	0.902				
N_d ²⁴² Cm	0.000	1.906	1.155	0.885	0.733	0.643				
N_d ²⁴⁴ Cm	0.000	2.898	1.441	1.337	1.129	1.047				
N_d ⁹⁰ Sr	0.000	0.055	0.101	0.154	0.191	0.209				
N_d ⁹⁵ Mo	0.000	0.032	0.034	0.052	0.066	0.063				
N_d ⁹⁹ Tc	0.000	0.025	0.026	0.029	0.047	0.072				
N_d ¹⁰¹ Ru	0.000	0.034	0.048	0.057	0.068	0.076				
N_d ¹⁰³ Rh	0.000	0.091	0.164	0.249	0.344	0.470				
N_d ¹⁰⁹ Ag	0.000	0.371	1.079	1.057	0.997	0.924				
N_d ¹²⁹ I	0.000	0.034	0.111	0.161	0.195	0.219				
N_d ¹³³ Xe	0.000	0.039	0.075	0.127	0.209	0.261				
N_d ¹³⁵ Xe	0.000	0.126	0.340	0.633	1.015	1.445				
N_d ¹³³ Cs	0.000	0.025	0.029	0.041	0.065	0.093				
N_d ¹³⁴ Cs	0.000	0.917	0.328	0.446	0.501	0.484				
N_d ¹³⁷ Cs	0.000	0.025	0.027	0.029	0.031	0.033				
N_d ¹⁴⁴ Ce	0.000	0.032	0.049	0.076	0.092	0.095				
N_d ¹⁴² Nd	0.000	0.539	0.260	0.382	0.556	0.693				
N_d ¹⁴³ Nd	0.000	0.036	0.031	0.023	0.083	0.216				
N_d ¹⁴⁴ Nd	0.000	0.038	0.087	0.162	0.248	0.337				
N_d ¹⁴⁵ Nd	0.000	0.025	0.033	0.043	0.049	0.044				
N_d ¹⁴⁶ Nd	0.000	0.030	0.034	0.051	0.067	0.091				
N_d ¹⁴⁸ Nd	0.000	0.042	0.043	0.043	0.044	0.046				
N_d ¹⁴⁷ Sm	0.000	0.030	0.056	0.101	0.169	0.260				
N_d ¹⁴⁹ Sm	0.000	0.087	0.470	0.743	1.136	1.509				
N_d ¹⁵⁰ Sm	0.000	0.169	0.056	0.069	0.080	0.088				
N_d ¹⁵¹ Sm	0.000	0.091	0.393	0.719	0.979	1.178				
N_d ¹⁵² Sm	0.000	0.120	0.140	0.283	0.363	0.422				
N_d ¹⁵³ Eu	0.000	0.132	0.208	0.349	0.323	0.324				
N_d ¹⁵⁴ Eu	0.000	0.364	0.257	0.361	0.429	0.643				
N_d ¹⁵⁵ Eu	0.000	0.278	0.530	0.509	0.511	0.524				
N_d ¹⁵⁵ Gd	0.000	0.286	0.844	1.036	1.309	1.790				
N_d ¹⁵⁶ Gd	0.000	0.311	0.362	0.247	0.159	0.350				
N_d ¹⁵⁷ Gd	0.000	0.406	1.101	1.300	1.304	1.393				
N_d ¹⁵⁸ Gd	0.000	0.463	0.639	0.635	0.484	0.275				

Appendix F

Tables for uncertainties from variations of 239 Pu nuclear data

			Burnup (GWd/MTU	J)	
	0	0.2	10	20	30	40
k_{∞}	0.030	0.022	0.148	0.247	0.322	0.385
rr 235 U _{n,γ}	0.000	0.010	0.220	0.360	0.420	0.480
rr 238 U _{n,γ}	0.000	0.000	0.170	0.270	0.320	0.430
rr 239 Pu _{n,\gamma}	0.000	0.160	0.270	0.320	0.370	0.390
rr 240 Pu _{n,\gamma}	0.000	0.000	0.080	0.120	0.200	0.260
rr 241 Pu $_{n,\gamma}$	0.020	0.000	0.240	0.360	0.410	0.450
${ m rr}^{235}{ m U}_{n,f}$	0.000	0.000	0.260	0.400	0.470	0.510
${\rm rr}^{238}{ m U}_{n,f}$	0.000	0.050	1.070	1.640	2.060	2.340
rr 239 Pu _{n,f}	0.000	0.000	1.440	1.450	1.460	1.510
rr 240 Pu _{n,f}	0.020	0.000	0.450	0.720	0.900	1.050
rr 241 Pu _{n,f}	0.020	0.000	0.250	0.370	0.430	0.470
Σ_{abs1}	0.000	0.090	0.120	0.140	0.170	0.200
Σ_{abs2}	0.000	0.080	0.150	0.170	0.170	0.120
Σ_{fiss1}	0.000	0.090	0.190	0.340	0.480	0.640
Σ_{fiss2}	0.000	0.080	0.250	0.360	0.430	0.450
$\nu \Sigma_{fiss1}$	0.000	0.090	0.240	0.440	0.610	0.790
$\nu \Sigma_{fiss2}$	0.000	0.080	0.290	0.410	0.470	0.470
D_1	0.000	0.000	0.300	0.470	0.590	0.670
D_2	0.000	0.000	0.280	0.290	0.220	0.250
Σ_{trn1}	0.000	0.000	0.330	0.480	0.610	0.680
Σ_{trn2}	0.000	0.000	0.100	0.160	0.000	0.100
$InvVel_1$	0.000	0.000	0.220	0.310	0.380	0.450
$InvVel_2$	0.000	0.040	0.050	0.060	0.060	0.060
scatt. gr. 1 to gr. 1	0.000	2.00e-2	1.40e-1	2.10e-1	2.70e-1	3.10e-1
scatt. gr. 2 to gr. 1	0.000	9.20e-1	1.04e + 0	1.05e + 0	9.80e-1	1.04e + 0
scatt. gr. 1 to gr. 2 $$	0.000	8.00e-2	2.20e-1	3.10e-1	3.90e-1	4.70e-1
scatt. gr. 2 to gr. 2	0.000	0.000	0.000	0.000	0.000	0.000
ADF, side W, gr. 1	0.000	0.000	0.000	0.000	0.000	0.000
ADF, side S, gr. 1	0.000	0.000	0.000	0.000	0.000	0.000
ADF, side E, gr. 1	0.000	0.000	0.000	0.000	0.000	0.000
ADF, side N, gr. 1	0.000	0.000	0.000	0.000	0.000	0.000
ADF, side W, gr. 2	0.000	0.000	0.000	0.000	6.00e-2	1.10e-1
				Cont	inued on 1	next page

Table F.1: Results of variations in the $^{239}\mathrm{Pu}$ nuclear data; Uncertainties (%)

Tab	le F.1 -	- continu	ed from p	revious p	age	
			Burnup (GWd/MT	U)	
	0	0.2	10	20	30	40
ADF, side S, gr. 2	0.000	0.000	0.000	0.000	6.00e-2	1.10e-1
ADF, side E, gr. 2	0.000	0.000	0.000	0.000	6.00e-2	1.10e-1
ADF, side N, gr. 2	0.000	0.000	0.000	0.000	6.00e-2	1.10e-1
N_d ²³⁴ U	0.000	0.000	0.055	0.200	0.386	0.581
N_d ²³⁵ U	0.000	0.000	0.037	0.126	0.255	0.409
N_d ²³⁶ U	0.000	0.000	0.104	0.147	0.153	0.131
N_d ²³⁸ U	0.000	0.000	0.000	0.002	0.004	0.007
N_d ²³⁷ Np	0.000	0.000	1.285	1.483	1.503	1.551
N_d ²³⁸ Pu	0.000	0.000	1.073	1.314	1.347	1.367
N_d ²³⁹ Pu	0.000	0.000	0.389	0.673	0.895	1.052
N_d ²⁴⁰ Pu	0.000	0.000	0.417	0.742	0.987	1.197
N_d ²⁴¹ Pu	0.000	0.000	0.325	0.451	0.596	0.672
N_d ²⁴² Pu	0.000	0.000	0.443	0.689	0.807	0.911
N_d ²⁴¹ Am	0.000	0.000	0.233	0.359	0.402	0.439
N_d ²⁴³ Am	0.000	0.000	0.353	0.465	0.851	0.948
N_d ²⁴² Cm	0.000	0.000	0.318	0.551	0.650	0.720
N_d ²⁴⁴ Cm	0.000	0.000	0.453	0.678	0.983	1.255
N_d ⁹⁰ Sr	0.000	0.000	0.079	0.109	0.114	0.105
N_d ⁹⁵ Mo	0.000	0.000	0.022	0.035	0.033	0.029
N_d ⁹⁹ Tc	0.000	0.000	0.011	0.019	0.028	0.040
N_d ¹⁰¹ Ru	0.000	0.000	0.023	0.033	0.040	0.047
N_d ¹⁰³ Rh	0.000	0.000	0.110	0.165	0.196	0.217
N_d ¹⁰⁹ Ag	0.000	0.000	0.914	0.718	0.519	0.370
N_d ¹²⁹ I	0.000	0.000	0.086	0.114	0.119	0.115
N_d ¹³³ Xe	0.000	0.000	0.030	0.052	0.065	0.115
N_d ¹³⁵ Xe	0.000	0.000	0.229	0.338	0.400	0.439
N_d ¹³³ Cs	0.000	0.000	0.012	0.024	0.035	0.050
N_d ¹³⁴ Cs	0.000	0.000	0.000	0.000	0.071	0.166
N_d ¹³⁷ Cs	0.000	0.000	0.014	0.022	0.029	0.034
N_d ¹⁴⁴ Ce	0.000	0.000	0.042	0.060	0.063	0.060
N_d ¹⁴² Nd	0.000	0.000	0.048	0.231	0.310	0.371
N_d ¹⁴³ Nd	0.000	0.000	0.020	0.016	0.039	0.084
N_d ¹⁴⁴ Nd	0.000	0.000	0.067	0.113	0.144	0.163
N_d ¹⁴⁵ Nd	0.000	0.000	0.028	0.034	0.034	0.035
N_d ¹⁴⁶ Nd	0.000	0.000	0.028	0.047	0.061	0.075
N_d ¹⁴⁸ Nd	0.000	0.000	0.019	0.033	0.043	0.053
$N_d \stackrel{147}{140} Sm$	0.000	0.000	0.000	0.022	0.086	0.155
$N_d \stackrel{149}{=} Sm$	0.000	0.000	0.255	0.299	0.350	0.393
$N_d \stackrel{150}{=} Sm$	0.000	0.000	0.006	0.018	0.043	0.063
$N_d \stackrel{151}{150} Sm$	0.000	0.000	0.276	0.401	0.404	0.370
$N_d \frac{152}{150} Sm$	0.000	0.000	0.035	0.060	0.000	0.000
$N_d \stackrel{153}{_{154}}Eu$	0.000	0.000	0.000	0.000	0.000	0.000
$N_d {}^{154}_{155} Eu$	0.000	0.000	0.000	0.000	0.000	0.000
$N_d \stackrel{155}{_{155}} Eu$	0.000	0.000	0.292	0.000	0.000	0.000
N_d ¹⁵⁵ Gd	0.000	0.000	0.599	0.506	0.446	0.405
$N_d \stackrel{156}{\sim} Gd$	0.000	0.000	0.250	0.139	0.077	0.201
$N_d \stackrel{157}{_{150}} Gd$	0.000	0.000	0.783	0.602	0.286	< 0.293
N_d ¹⁵⁸ Gd	0.000	0.000	0.475	0.373	0.188	0.125

Appendix G

Tables for uncertainties from variations of H in H_2O thermal scattering

	Burnup (GWd/MTU)								
	0	0.2	10	20	30	40			
			Burnup (G	Wd/MTU)					
	0	0.2	10	20	30	40			
k_{∞}	0.136	0.122	0.242	0.299	0.299	0.280			
rr 235 U _{n,γ}	0.270	0.250	0.080	0.110	0.290	0.530			
$\mathrm{rr}^{238}\mathrm{U}_{n,\gamma}$	0.280	0.210	0.290	0.280	0.230	0.220			
rr 239 Pu $_{n,\gamma}$	2.360	2.310	1.830	1.550	1.240	1.000			
rr 240 Pu $_{n,\gamma}$	4.870	4.990	4.830	4.420	4.290	4.370			
rr 241 Pu $_{n,\gamma}$	1.130	1.110	0.700	0.420	0.160	0.250			
$\operatorname{rr}^{235}\operatorname{U}_{n,f}$	0.020	0.030	0.310	0.560	0.800	1.070			
$\operatorname{rr}^{238}\operatorname{U}_{n,f}$	0.240	0.280	0.250	0.210	0.510	0.310			
$\operatorname{rr}^{239}\operatorname{Pu}_{n,f}$	1.800	1.770	1.280	0.980	0.660	0.420			
$\operatorname{rr}^{240}\operatorname{Pu}_{n,f}$	0.660	0.630	0.640	0.560	0.640	0.410			
$\operatorname{rr}^{241}\operatorname{Pu}_{n,f}$	0.790	0.760	0.390	0.140	0.150	0.440			
Σ_{abs1}	0.450	0.390	0.550	0.650	0.630	0.750			
Σ_{abs2}	1.240	1.210	0.920	0.670	0.550	0.360			
Σ_{fiss1}	0.780	0.750	0.690	0.710	0.640	0.690			
Σ_{fiss2}	1.270	1.250	1.010	0.740	0.580	0.330			
$\nu \Sigma_{fiss1}$	0.750	0.710	0.650	0.680	0.620	0.660			
$ u \Sigma_{fiss2}$	1.270	1.240	0.960	0.680	0.520	0.310			
D_1	0.160	0.190	0.170	0.210	0.280	0.060			
D_2	5.030	5.020	5.020	5.000	5.090	4.890			
Σ_{trn1}	0.430	0.450	0.450	0.480	0.530	0.450			
Σ_{trn2}	4.910	4.880	4.860	4.900	4.940	4.800			
$InvVel_1$	3.300	3.310	3.220	3.150	3.040	3.010			
$InvVel_2$	1.540	1.570	1.560	1.540	1.550	1.490			
scatt. gr. 1 to gr. 1	2.60e-1	2.60e-1	2.60e-1	2.50e-1	2.60e-1	2.40e-1			
scatt. gr. 2 to gr. 1	5.25e + 0	5.15e + 0	4.86e + 0	5.77e + 0	5.53e + 0	5.53e + 0			
scatt. gr. 1 to gr. 2	8.00e-1	7.90e-1	8.90e-1	9.80e-1	1.00e+0	1.03e + 0			
scatt. gr. 2 to gr. 2	6.29e + 0	6.27e + 0	6.24e + 0	6.25e + 0	6.23e + 0	6.21e + 0			
ADF, side W, gr. 1	1.10e-1	-	-	2.40e-1	1.00e-1	-			
ADF, side S, gr. 1	1.10e-1	-	-	2.40e-1	1.00e-1	-			
				Cor	ntinued on	next page			

Table G.1: Results of variations in the H in $\rm H_2O$ thermal scattering; Uncertainties (%)

	Table G.1 – continued from previous page								
	Burnup	(GWd/MTU	r)						
0 0.2	2 10	20	30	40					
ADF, side E, gr. 1 1.10e-1 -	-	2.40e-1	1.00e-1	-					
ADF, side N, gr. 1 1.10e-1 -	-	2.40e-1	1.00e-1	-					
ADF, side W, gr. 2 3.50e-1 3.10e	-1 -	2.80e-1	6.00e-1	5.40e-1					
ADF, side S, gr. 2 3.50e-1 3.10e	-1 -	2.80e-1	6.00e-1	5.40e-1					
ADF, side E, gr. 2 3.50e-1 3.10e	-1 -	2.80e-1	6.00e-1	5.40e-1					
ADF, side N, gr. 2 3.50e-1 3.10e	-1 -	2.80e-1	6.00e-1	5.40e-1					
$N_d {}^{234}U$ 0.000 0.00	0.344	0.700	1.049	1.321					
$N_d {}^{235}U$ 0.000 0.00	0.031	0.133	0.317	0.592					
$N_d {}^{236}U$ 0.000 0.31	2 0.166	0.099	0.073	0.060					
$N_d {}^{238}U$ 0.000 0.00	0.002	0.004	0.006	0.008					
$N_d {}^{237}Np$ 0.000 1.90	0.486	0.509	0.454	0.365					
$N_d {}^{238}Pu$ 0.000 3.03	6 2.916	2.989	2.939	2.850					
$N_d {}^{239}Pu$ 0.000 0.43	0.243	0.453	0.515	0.491					
$N_d {}^{240}Pu$ 0.000 1.94	.3 0.418	0.974	1.642	2.211					
$N_d {}^{241}Pu$ 0.000 6.99	9 5.365	4.142	3.218	2.752					
$N_d {}^{242}Pu$ 0.000 8.01	6 6.371	4.693	3.376	2.393					
$N_d {}^{241}Am = 0.000 6.91$	4 5.412	3.879	2.713	1.940					
$N_d {}^{243}Am = 0.000 13.2$	29 12.032	10.223	8.682	7.246					
$N_d {}^{242}Cm$ 0.000 9.87	2 8.673	6.979	5.730	4.698					
$N_d {}^{244}Cm$ 0.000 17.6	79 16.853	15.225	13.811	12.452					
$N_d {}^{90}_{0.000}$ Sr 0.000 0.02	0.104	0.154	0.182	0.193					
$N_d {}^{95}_{00}Mo$ 0.000 0.01	.7 0.040	0.064	0.082	0.092					
$N_d \stackrel{99}{_{-101}}Tc$ 0.000 0.01	.6 0.030	0.054	0.076	0.092					
$N_d = \frac{100}{100} Ru$ 0.000 0.01	.5 0.015	0.026	0.029	0.031					
$N_d = \frac{103}{100}$ Rh $0.000 = 0.02$	0.271	0.574	0.897	1.189					
$N_d \stackrel{109}{=} Ag = 0.000 0.08$	³⁹ 0.940	0.609	0.280	0.293					
$N_d \stackrel{125}{=} 1 0.000 0.01$	9 0.092	0.132	0.147	0.148					
$N_d = \frac{135}{Xe}$ 0.000 0.01	0.037	0.073	0.086	0.139					
$N_d \stackrel{100}{\sim} Xe = 0.000 0.65$	04 0.946	1.140	1.360	1.557					
$N_d \stackrel{136}{\simeq} Cs$ 0.000 0.01	6 0.023	0.046	0.068	0.077					
$N_d \stackrel{107}{=} Cs = 0.000 1.00$	5 0.571	0.669	0.654	0.534					
$N_d = Cs$ 0.000 0.01	.5 0.006	0.009	0.010	0.010					
$N_d = Ce$ 0.000 0.01	0.055	0.074	0.079	0.071					
$N_d = N_d$ 0.000 0.52	0.217	0.192	0.212	0.248					
$N_d = Nd = 0.000 = 0.01$.8 0.043	0.030	0.016	0.093					
N_d Nd 0.000 0.01	.5 0.050	0.100	0.104	0.218					
N_d N_d 0.000 0.01	0.099	0.172	0.238	0.290					
N_d N_d 0.000 0.01	4 0.047	0.110	0.108	0.217					
$N_d = N_d = 0.000 = 0.01$.5 0.009	0.010	0.011	0.013					
$N_d Sm = 0.000 0.01$.8 0.249	0.488	1.004	0.913					
N_d Sm 0.000 0.00	9 1.192	1.011	1.884	2.109					
$N_d = Sm = 0.000 = 0.34$	0.229	0.430	0.547	0.018					
N_d SIII 0.000 0.02 N_s 152 Sm 0.000 0.05		1.4//	1.790	1.999					
N_d SIII 0.000 0.00 N, $^{153}E_{11}$ 0.000 0.00	0.109 0 0.001	0.202	0.304 0 551	0.309					
$N_{d} = 100 = 0.000 = 0.000$ $N_{c} = 154 E_{11} = 0.000 = 2.25$	6 1 011	1 744	1 521	1967					
N_d Eu 0.000 2.23 N, ¹⁵⁵ Eu 0.000 0.17	0 1.911	1.744	1.551	1.207 1.747					
N_a ^{155}Gd 0.000 0.14	1.002 8 0.226	1 1 2 0	1.370	1 462					
N_a ¹⁵⁶ Gd 0.000 0.96	3 1270	1.120 1 474	1 630	1.532					
N_d ¹⁵⁷ Gd 0.000 0.20	2 3 288	3 741	4.121	4.218					
N_d ¹⁵⁸ Gd 0.000 0.52	0.924	1.186	1.323	1.368					

Appendix H

Tables for uncertainties from variations of fission products

	Burnup (GWd/MTU)								
	0	0.2	10	20	30	40			
k_{∞}	0.000	0.046	0.070	0.104	0.136	0.145			
rr 235 U _{n,γ}	0.000	0.020	0.030	0.000	0.050	0.080			
rr 238 U _{n,γ}	0.000	0.090	0.140	0.080	0.080	0.120			
rr 239 Pu _{n,\gamma}	0.000	0.000	0.000	0.080	0.060	0.120			
rr 240 Pu _{n,\gamma}	0.000	0.000	0.100	0.180	0.110	0.140			
rr 241 Pu $_{n,\gamma}$	0.000	0.020	0.020	0.060	0.050	0.120			
$\operatorname{rr}^{235}\operatorname{U}_{n,f}$	0.000	0.000	0.020	0.040	0.050	0.120			
rr 238 U _{n,f}	0.000	0.040	0.110	0.140	0.180	0.250			
$\operatorname{rr}^{239}\operatorname{Pu}_{n,f}$	0.000	0.000	0.000	0.060	0.060	0.110			
rr 240 Pu _{n,f}	0.000	0.000	0.020	0.110	0.140	0.220			
$\operatorname{rr}^{241}\operatorname{Pu}_{n,f}$	0.000	0.000	0.030	0.040	0.050	0.100			
Σ_{abs1}	0.000	0.110	0.130	0.200	0.220	0.240			
Σ_{abs2}	0.000	0.110	0.110	0.110	0.140	0.140			
Σ_{fiss1}	0.000	0.100	0.100	0.110	0.110	0.100			
Σ_{fiss2}	0.000	0.110	0.110	0.110	0.130	0.130			
$\nu \Sigma_{fiss1}$	0.000	0.100	0.100	0.110	0.120	0.100			
$\nu \Sigma_{fiss2}$	0.000	0.110	0.110	0.110	0.130	0.130			
D_1	0.000	0.040	0.030	0.020	0.000	0.100			
D_2	0.000	0.000	0.300	0.430	0.470	0.550			
Σ_{trn1}	0.000	0.140	0.150	0.150	0.130	0.180			
Σ_{trn2}	0.000	0.300	0.200	0.390	0.440	0.510			
$InvVel_1$	0.000	0.120	0.120	0.130	0.150	0.190			
$InvVel_2$	0.000	0.040	0.040	0.050	0.040	0.050			
scatt. gr. 1 to gr. 1	0.000	2.00e-2	5.00e-2	1.00e-1	1.30e-1	1.70e-1			
scatt. gr. 2 to gr. 1	0.000	9.80e-1	9.70e-1	1.17e + 0	1.46e + 0	1.48e + 0			
scatt. gr. 1 to gr. 2	0.000	8.00e-2	1.00e-1	1.30e-1	1.70e-1	1.80e-1			
scatt. gr. 2 to gr. 2 $$	0.000	0.000	7.00e-2	1.50e-1	2.10e-1	2.60e-1			
ADF, side W, gr. 1	0.000	1.30e-1	1.00e-1	1.10e-1	0.000	5.00e-2			
ADF, side S, gr. 1	0.000	1.30e-1	1.00e-1	1.10e-1	0.000	5.00e-2			
ADF, side E, gr. 1	0.000	1.30e-1	1.00e-1	1.10e-1	0.000	5.00e-2			
ADF, side N, gr. 1	0.000	1.30e-1	1.00e-1	1.10e-1	0.000	5.00e-2			
				Cor	tinued on a	next page			

Table H.1: Results of variations in the fission products data; uncertainties (%)

Table H.1 – continued from previous page						
			Burnup	(GWd/MT	'U)	
	0	0.2	10	20	30	40
ADF, side W, gr. 2	0.000	3.30e-1	9.00e-2	2.90e-1	1.20e-1	2.40e-1
ADF, side S, gr. 2	0.000	3.30e-1	9.00e-2	2.90e-1	1.20e-1	2.40e-1
ADF, side E, gr. 2	0.000	3.30e-1	9.00e-2	2.90e-1	1.20e-1	2.40e-1
ADF, side N, gr. 2	0.000	3.30e-1	9.00e-2	2.90e-1	1.20e-1	2.40e-1
N _d ²³⁴ U	0.000	0.000	0.000	0.000	0.000	0.000
N_d ²³⁵ U	0.000	0.000	0.003	0.007	0.011	0.033
N_d ²³⁶ U	0.000	0.000	0.013	0.000	0.000	0.000
N_d ²³⁸ U	0.000	0.000	0.000	0.000	0.001	0.001
N_d ²³⁷ Np	0.000	0.000	0.000	0.000	0.000	0.000
N_d ²³⁸ Pu	0.000	0.000	0.000	0.000	0.000	0.000
N_d ²³⁹ Pu	0.000	0.000	0.000	0.000	0.000	0.092
N_d ²⁴⁰ Pu	0.000	0.000	0.000	0.000	0.000	0.000
N_d ²⁴¹ Pu	0.000	0.000	0.000	0.000	0.000	0.000
N_d ²⁴² Pu	0.000	0.000	0.000	0.000	0.000	0.000
N_d ²⁴¹ Am	0.000	0.000	0.000	0.049	0.000	0.000
N_d ²⁴³ Am	0.000	0.000	0.000	0.000	0.000	0.000
N_d^{242} Cm	0.000	0.000	0.000	0.000	0.000	0.000
N_d ²⁴⁴ Cm	0.000	0.000	0.000	0.000	0.000	0.000
N_d ⁹⁰ Sr	0.000	0.011	0.011	0.011	0.010	0.014
N_d ⁹⁵ Mo	0.000	0.012	0.214	0.515	0.868	1.236
$N_d^{99}Tc$	0.000	0.012	0.182	0.386	0.611	0.841
$N_d^{101}Ru$	0.000	0.011	0.154	0.326	0.517	0.709
N_d ¹⁰³ Rh	0.000	0.008	0.362	0.789	1.219	1.603
N_d ¹⁰⁹ Ag	0.000	< 0.049	0.339	0.693	1.028	1.348
N_d ¹²⁹ I	0.000	0.012	0.253	0.543	0.863	1.191
N_d ¹³³ Xe	0.000	0.018	0.851	1.730	2.603	3.429
N_d ¹³⁵ Xe	0.000	2.043	2.052	2.109	2.160	2.218
N_d ¹³³ Cs	0.000	0.013	0.459	0.978	1.541	2.098
N_d ¹³⁴ Cs	0.000	7.882	8.013	7.814	7.529	7.174
N_d ¹³⁷ Cs	0.000	0.011	0.013	0.014	0.015	0.016
N_d ¹⁴⁴ Ce	0.000	0.011	0.012	0.012	0.012	0.015
N_d ¹⁴² Nd	0.000	11.380	11.856	12.055	12.095	12.023
N_d ¹⁴³ Nd	0.000	0.011	0.440	0.931	1.419	1.858
N_d ¹⁴⁴ Nd	0.000	0.055	1.024	1.050	0.997	0.915
N_d ¹⁴⁵ Nd	0.000	0.020	1.056	2.224	3.490	4.754
N_d ¹⁴⁶ Nd	0.000	0.027	1.181	2.120	2.836	3.324
N_d ¹⁴⁸ Nd	0.000	0.011	0.046	0.093	0.147	0.203
N_d ¹⁴⁷ Sm	0.000	0.060	3.616	7.476	11.205	14.468
N_d ¹⁴⁹ Sm	0.000	< 0.028	< 0.161	0.070	0.261	0.351
N_d ¹⁵⁰ Sm	0.000	< 0.104	0.052	0.106	0.163	0.219
N_d ¹⁵¹ Sm	0.000	0.007	0.111	0.240	0.359	0.459
N_d ¹⁵² Sm	0.000	0.027	1.249	2.343	3.206	3.803
N_d ¹⁵³ Eu	0.000	0.053	2.487	3.518	4.201	4.705
N_d ¹⁵⁴ Eu	0.000	6.521	5.492	4.539	3.500	2.561
N_d ¹⁵⁵ Eu	0.000	< 0.038	2.613	3.593	3.129	2.435
N_d ¹⁵⁵ Gd	0.000	0.086	2.589	3.649	3.237	2.601
N_d ¹⁵⁶ Gd	0.000	< 0.048	1.011	2.489	3.090	3.208
N_d ¹⁵⁷ Gd	0.000	0.245	2.647	6.233	9.315	11.254
N_d ¹⁵⁸ Gd	0.000	0.087	1.114	2.899	5.064	7.036

Appendix I

Tables for uncertainties from variations of minor actinides

	Burnup (GWd/MTU)							
	0	0.2	10	20	30	40		
k_{∞}	0.000	0.000	0.027	0.033	0.058	0.075		
$\operatorname{rr}^{235} \operatorname{U}_{n,\gamma}$	0.000	0.020	0.000	0.030	0.070	0.120		
$\operatorname{rr}^{238} \operatorname{U}_{n,\gamma}$	0.000	0.000	0.000	0.000	0.100	0.030		
rr 239 Pu _{n,\gamma}	0.000	0.000	0.010	0.060	0.080	0.140		
rr 240 Pu $_{n,\gamma}$	0.000	0.760	0.810	0.720	0.830	0.830		
rr 241 Pu $_{n,\gamma}$	0.000	1.030	1.030	1.030	1.050	1.060		
$\operatorname{rr}^{235}\operatorname{U}_{n,f}$	0.000	0.000	0.000	0.050	0.080	0.140		
rr 238 U _{n,f}	0.000	0.000	0.000	0.160	0.300	0.420		
$\operatorname{rr}^{239}\operatorname{Pu}_{n,f}$	0.000	0.000	0.000	0.050	0.080	0.140		
$\operatorname{rr}^{240}\operatorname{Pu}_{n,f}$	0.000	0.000	0.150	0.140	0.200	0.195		
rr 241 Pu _{n,f}	0.000	0.000	0.460	0.440	0.430	0.430		
Σ_{abs1}	0.000	0.000	0.090	0.090	0.100	0.110		
Σ_{abs2}	0.000	0.070	0.070	0.090	0.120	0.150		
Σ_{fiss1}	0.000	0.000	0.100	0.090	0.120	0.190		
Σ_{fiss2}	0.000	0.080	0.070	0.090	0.110	0.130		
$\nu \Sigma_{fiss1}$	0.000	0.000	0.100	0.100	0.140	0.210		
$\nu \Sigma_{fiss2}$	0.000	0.080	0.070	0.100	0.110	0.140		
D_1	0.000	0.030	0.000	0.000	0.000	0.110		
D_2	0.000	0.000	0.300	0.290	0.220	0.260		
Σ_{trn1}	0.000	0.000	0.120	0.120	0.140	0.180		
Σ_{trn2}	0.000	0.000	0.150	0.150	< 0.280	0.120		
$InvVel_1$	0.000	0.000	0.080	0.080	0.110	0.110		
InvVel ₂	0.000	0.000	0.040	0.040	0.040	0.050		
scatt. gr. 1 to gr. 1	0.000	0.000	2.00e-2	3.00e-2	5.00e-2	6.00e-2		
scatt. gr. 2 to gr. 1 $$	0.000	0.000	9.40e-1	9.00e-1	9.60e-1	9.70e-1		
scatt. gr. 1 to gr. 2 $$	0.000	0.000	9.00e-2	9.00e-2	1.10e-1	1.20e-1		
scatt. gr. 2 to gr. 2 $$	0.000	0.000	0.000	0.000	0.000	0.000		
ADF, side W, gr. 1	0.000	0.000	8.00e-2	8.00e-2	6.00e-2	0.000		
ADF, side S, gr. 1	0.000	0.000	8.00e-2	8.00e-2	6.00e-2	0.000		
ADF, side E, gr. 1	0.000	0.000	8.00e-2	8.00e-2	6.00e-2	0.000		
ADF, side N, gr. 1	0.000	0.000	8.00e-2	8.00e-2	6.00e-2	0.000		
ADF, side W, gr. 2	0.000	0.000	0.000	1.20e-1	1.50e-1	2.00e-1		
				Conti	nued on n	ext page		

Table I.1:	Results	of vari	ations	in t	the	minor	actinide	data;	uncertainties	
(%)										

Table I.1 – continued from previous page										
			Burnup (GWd/MT	U)					
	0	0.2	10	20	30	40				
ADF, side S, gr. 2	0.000	0.000	0.000	1.20e-1	1.50e-1	2.00e-1				
ADF, side E, gr. 2	0.000	0.000	0.000	1.20e-1	1.50e-1	2.00e-1				
ADF, side N, gr. 2	0.000	0.000	0.000	1.20e-1	1.50e-1	2.00e-1				
N_d ²³⁴ U	0.000	0.029	1.448	2.961	4.585	6.200				
N_d ²³⁵ U	0.000	0.000	0.005	0.020	0.057	0.133				
N_d ²³⁶ U	0.000	0.055	0.045	0.084	0.122	0.163				
N_d ²³⁸ U	0.000	0.000	0.001	0.002	0.004	0.007				
N_d ²³⁷ Np	0.000	0.000	1.343	1.820	2.283	2.816				
N_d ²³⁸ Pu	0.000	6.999	7.038	6.770	6.813	7.157				
N_d ²³⁹ Pu	0.000	0.178	0.166	0.258	0.353	0.522				
N_d ²⁴⁰ Pu	0.000	2.932	0.222	0.339	0.420	0.539				
N_d ²⁴¹ Pu	0.000	4.340	0.520	0.384	0.467	0.490				
N_d ²⁴² Pu	0.000	5.636	1.208	1.224	1.367	1.597				
N_d ²⁴¹ Am	0.000	5.539	1.106	2.206	3.486	4.841				
N_d ²⁴³ Am	0.000	8.311	5.310	5.118	5.028	4.924				
N_d ²⁴² Cm	0.000	10.068	7.435	6.864	6.167	5.423				
N_d ²⁴⁴ Cm	0.000	10.309	6.363	6.133	5.953	5.756				
N_d ⁹⁰ Sr	0.000	0.030	0.010	0.018	0.026	0.035				
N_d ⁹⁵ Mo	0.000	0.036	0.012	0.021	0.036	0.055				
$N_d^{99}Tc$	0.000	0.035	0.220	0.464	0.729	0.989				
N_d ¹⁰¹ Ru	0.000	0.038	0.224	0.472	0.742	1.014				
$N_d^{103}Rh$	0.000	0.044	0.408	0.852	1.298	1.692				
$N_d^{109}Ag$	0.000	0.102	0.115	0.328	0.514	0.646				
N _d ¹²⁹ I	0.000	0.042	0.077	0.165	0.266	0.368				
$N_d^{133}Xe$	0.000	0.042	0.182	0.393	0.606	0.833				
N_d ¹³⁵ Xe	0.000	5.770	5.742	5.714	5.678	5.638				
N_d ¹³³ Cs	0.000	0.036	0.271	0.575	0.901	1.223				
N_d ¹³⁴ Cs	0.000	8.801	8.432	8.360	8.214	8.008				
$N_d^{-137}Cs$	0.000	0.038	0.003	0.010	0.017	0.026				
N_d ¹⁴⁴ Ce	0.000	0.035	0.004	0.007	0.015	0.024				
N_d ¹⁴² Nd	0.000	18.613	18.273	18.175	18.002	17.880				
N_d ¹⁴³ Nd	0.000	0.021	1.011	1.997	2.901	3.680				
N_d ¹⁴⁴ Nd	0.000	0.160	3.071	3.313	3.310	3.188				
N_d^{145} Nd	0.000	0.030	0.430	0.867	1.327	1.761				
N_d ¹⁴⁶ Nd	0.000	0.051	0.526	1.006	1.452	1.817				
N_d ¹⁴⁸ Nd	0.000	0.044	0.001	0.011	0.022	0.035				
N_d ¹⁴⁷ Sm	0.000	0.031	0.616	1.322	2.044	2.696				
$N_d^{149}Sm$	0.000	0.043	0.094	0.215	0.413	0.718				
$N_d^{150}Sm$	0.000	0.000	0.021	0.059	0.093	0.127				
$N_d^{151}Sm$	0.000	0.052	0.065	0.171	0.286	0.515				
N_d ¹⁵² Sm	0.000	0.038	0.709	1.279	1.758	2.136				
N_d ¹⁵³ Eu	0.000	0.045	0.584	1.722	2.798	3.640				
N_d ¹⁵⁴ Eu	0.000	16.409	15.047	12.740	10.062	7.841				
N_d ¹⁵⁵ Eu	0.000	0.083	4.176	7.828	8.012	6.515				
$\tilde{N_d}^{155}$ Gd	0.000	1.484	6.153	4.908	4.759	5.065				
$\tilde{N_d}^{156}$ Gd	0.000	0.112	1.040	3.537	5.010	5.193				
N_d ¹⁵⁷ Gd	0.000	5.878	7.726	6.899	5.785	4.814				
$\tilde{N_d}^{158}$ Gd	0.000	6.097	0.727	1.732	3.368	5.159				

Appendix J

Tables for uncertainties from variations of fission yields

	Burnup (GWd/MTU)								
	0	0.2	10	20	30	40			
k_{∞}	0.000	0.109	0.174	0.217	0.261	0.312			
$\operatorname{rr}^{235} \operatorname{U}_{n,\gamma}$	0.000	0.030	0.010	0.020	0.030	0.080			
rr 238 U $_{n,\gamma}$	0.000	0.090	0.170	0.160	0.130	0.180			
rr 239 Pu _{n,\gamma}	0.000	0.000	0.020	0.050	0.100	0.160			
rr 240 Pu _{n,\gamma}	0.000	0.000	0.220	0.100	0.130	0.160			
rr 241 Pu $_{n,\gamma}$	0.000	0.000	0.000	0.070	0.120	0.190			
$\operatorname{rr}^{235}\operatorname{U}_{n,f}$	0.000	0.010	0.040	0.080	0.130	0.200			
$\operatorname{rr}^{238}\operatorname{U}_{n,f}$	0.000	0.100	0.170	0.220	0.240	0.290			
$\operatorname{rr}^{239}\operatorname{Pu}_{n,f}$	0.000	0.000	0.020	0.050	0.110	0.180			
$\operatorname{rr}^{240}\operatorname{Pu}_{n,f}$	0.000	0.000	0.170	0.220	0.230	0.290			
$\operatorname{rr}^{241}\operatorname{Pu}_{n,f}$	0.000	0.000	0.010	0.080	0.130	0.200			
Σ_{abs1}	0.000	0.090	0.130	0.190	0.220	0.260			
Σ_{abs2}	0.000	0.120	0.170	0.230	0.280	0.360			
Σ_{fiss1}	0.000	0.090	0.080	0.080	0.100	0.100			
Σ_{fiss2}	0.000	0.100	0.100	0.100	0.100	0.120			
$\nu \Sigma_{fiss1}$	0.000	0.090	0.080	0.080	0.100	0.100			
$\nu \Sigma_{fiss2}$	0.000	0.000	0.090	0.100	0.100	0.130			
D_1	0.000	0.000	0.000	0.090	0.000	0.040			
D_2	0.000	0.000	0.280	0.270	0.270	0.260			
Σ_{trn1}	0.000	0.110	0.120	0.160	0.130	0.150			
Σ_{trn2}	0.000	0.180	0.100	0.100	0.110	0.120			
$InvVel_1$	0.000	0.090	0.100	0.120	0.120	0.150			
InvVel ₂	0.000	0.040	0.050	0.050	0.060	0.070			
scatt. gr. 1 to gr. 1	0.000	2.00e-2	2.00e-2	2.00e-2	2.00e-2	2.00e-2			
scatt. gr. 2 to gr. 1	0.000	8.60e-1	9.80e-1	9.00e-1	9.60e-1	1.03e+0			
scatt. gr. 1 to gr. 2	0.000	8.00e-2	1.10e-1	1.40e-1	1.50e-1	1.80e-1			
scatt. gr. 2 to gr. 2 $$	0.000	0.000	0.000	0.000	0.000	0.000			
ADF, side W, gr. 1	0.000	0.000	7.00e-2	6.00e-2	6.00e-2	5.00e-2			
ADF, side S, gr. 1	0.000	0.000	7.00e-2	6.00e-2	6.00e-2	5.00e-2			
ADF, side E, gr. 1	0.000	0.000	7.00e-2	6.00e-2	6.00e-2	5.00e-2			
ADF, side N, gr. 1	0.000	0.000	7.00e-2	6.00e-2	6.00e-2	5.00e-2			
				Cont	tinued on a	next page			

Table J.1: Results of variations in the fission yield data; uncertainties (%)

Table J.1 – continued from previous page									
		Burnup (GWd/MTU)							
	0	0.2	10	20	30	40			
ADF, side W, gr. 2	0.000	1.00e-1	7.00e-2	1.30e-1	1.00e-1	1.10e-1			
ADF, side S, gr. 2	0.000	1.00e-1	7.00e-2	1.30e-1	1.00e-1	1.10e-1			
ADF, side E, gr. 2	0.000	1.00e-1	7.00e-2	1.30e-1	1.00e-1	1.10e-1			
ADF, side N, gr. 2	0.000	1.00e-1	7.00e-2	1.30e-1	1.00e-1	1.10e-1			
N_d ²³⁴ U	0.000	0.000	0.000	0.000	0.000	0.000			
N_d ²³⁵ U	0.000	0.000	0.003	0.014	0.038	0.079			
N_d ²³⁶ U	0.000	0.000	0.012	0.011	0.018	0.028			
N_d ²³⁸ U	0.000	0.000	0.001	0.001	0.002	0.003			
N_d ²³⁷ Np	0.000	0.000	0.000	0.174	0.236	0.254			
N_d ²³⁸ Pu	0.000	0.000	0.000	0.217	0.242	0.295			
N_d ²³⁹ Pu	0.000	0.000	0.073	0.104	0.141	0.217			
N_d ²⁴⁰ Pu	0.000	0.000	0.000	0.000	0.000	0.000			
N_d ²⁴¹ Pu	0.000	0.000	0.000	0.000	0.127	0.127			
N_d ²⁴² Pu	0.000	0.000	0.000	0.000	0.000	0.000			
N_d ²⁴¹ Am	0.000	0.000	0.000	0.105	0.119	0.157			
N_d ²⁴³ Am	0.000	0.000	0.000	0.000	0.000	0.000			
N_d ²⁴² Cm	0.000	0.000	0.000	0.080	0.061	0.131			
N_d ²⁴⁴ Cm	0.000	0.000	0.000	0.000	0.000	0.000			
N_d ⁹⁰ Sr	0.000	6.156	5.935	5.785	5.672	5.590			
N_d ⁹⁵ Mo	0.000	5.540	5.319	5.455	5.862	6.368			
N_d ⁹⁹ Tc	0.000	12.443	11.106	10.272	9.700	9.327			
N_d ¹⁰¹ Ru	0.000	2.596	2.649	2.973	3.351	3.714			
N_d ¹⁰³ Rh	0.000	13.282	11.694	11.194	11.196	11.398			
N_d ¹⁰⁹ Ag	0.000	34.788	26.569	25.370	23.176	21.196			
N_d ¹²⁹ I	0.000	8.176	8.479	10.688	12.425	13.690			
N_d ¹³³ Xe	0.000	11.267	9.637	8.730	8.034	7.506			
N_d ¹³⁵ Xe	0.000	3.265	3.058	3.260	3.536	3.845			
N_d ¹³³ Cs	0.000	3.719	3.452	3.342	3.316	3.349			
N_d ¹³⁴ Cs	0.000	7.646	3.452	3.263	3.188	3.146			
$N_d \stackrel{137}{\longrightarrow} Cs$	0.000	2.080	2.022	2.004	2.003	2.012			
N_d ¹⁴⁴ Ce	0.000	2.538	2.854	3.537	4.332	5.130			
$N_d \stackrel{142}{\sim} Nd$	0.000	3.041	2.933	2.886	2.876	2.931			
$N_d \frac{143}{144} Nd$	0.000	4.072	3.910	3.972	4.149	4.387			
$N_d \frac{144}{145} Nd$	0.000	2.394	2.237	2.467	2.738	2.992			
$N_d \stackrel{145}{\longrightarrow} Nd$	0.000	4.690	4.519	4.665	4.949	5.289			
$N_d \stackrel{146}{\longrightarrow} Nd$	0.000	16.536	14.954	13.738	12.706	11.854			
N_d ¹⁴⁸ Nd	0.000	16.551	14.589	13.515	12.752	12.219			
$N_d \frac{147}{140} Sm$	0.000	9.584	9.026	8.641	8.384	8.218			
$N_d \stackrel{149}{150} Sm$	0.000	12.398	9.225	8.496	8.436	8.598			
$N_d \stackrel{150}{151} Sm$	0.000	12.389	10.248	9.113	8.560	8.305			
$N_d \stackrel{151}{=} Sm$	0.000	29.301	21.882	16.608	13.340	11.388			
$N_d \frac{152}{152} Sm$	0.000	29.043	16.579	14.112	12.121	10.639			
$N_d \stackrel{153}{_{154}}Eu$	0.000	30.005	16.542	12.782	11.147	10.073			
$N_d \stackrel{154}{155} Eu$	0.000	30.039	18.629	13.813	11.816	10.632			
$N_d \stackrel{155}{_{155}}Eu$	0.000	32.689	16.063	11.649	10.473	9.733			
$N_d \stackrel{155}{_{156}}Gd$	0.000	32.755	16.808	11.857	10.799	10.197			
$N_d \stackrel{156}{157} Gd$	0.000	36.443	16.818	12.324	10.330	9.499			
$N_d \frac{157}{150}$ Gd	0.000	33.203	20.954	18.238	14.925	12.354			
N_d ¹⁵⁸ Gd	0.000	30.453	17.053	16.164	14.877	13.477			

NRG

Petten

+31 (0)224 56 4950 Westerduinweg 3 P.O. Box 25 1755 ZG Petten The Netherlands

> Arnhem +31 (0) 26 356 85 24 Utrechtseweg 310

P.O. Box 9034 6800 ES Arnhem The Netherlands

> More information www.nrg.eu info@nrg.eu