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(assembly)
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The preliminary report can be found at

ftp://ftp.nrg.eu/pub/www/talys/bib_rochman/uam-phase2.pdf

ftp://ftp.nrg.eu/pub/www/talys/bib_rochman/uam-phase2.pdf
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Control of nuclear data (TALYS system)
+ processing (NJOY)

+ system simulation (MCNP/ERANOS/CASMO...)

1000
times

For each random ENDF file, the benchmark calculation is performed with MCNP. At
the end of then calculations,n different keff values are obtained.
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Z computer time (not human time),
Z Successfully applied (criticality, shielding, reactor, burn-up...)
Z Most simple path (no additional processing, no covariance required),
Z Many spin-offs (TENDL covariances, sensitivity, adjustment...)
Z also applicable to fission yields, thermal scattering, pseudo-fission products, all

isotopes (...just everything),
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Z computer time (not human time),
Z Successfully applied (criticality, shielding, reactor, burn-up...)
Z Most simple path (no additional processing, no covariance required),
Z Many spin-offs (TENDL covariances, sensitivity, adjustment...)
Z also applicable to fission yields, thermal scattering, pseudo-fission products, all

isotopes (...just everything),

In TMC:

If we can do a calculation once, we can also do
it a 1000 times, each time with a varying data library.

Well, then uncertainty propagation with TMC takes1000× longer than a single
calculation... (Each σstatisticsneeds to be small)
There is at least one solution with Monte Carlo codes: the fast TMC method
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If a single calculation takesm histories (σstatsmall enough),
then repeat itn times withm/n histories,
random nuclear data and random seeds.

σ2
total = σ2

statistics+σ2
nuclear datastill holds.
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Description of the SERPENT model (assembly)
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The fuel test is a typical fuel rod from TMI-1 PWR, 15x15 assembly design, see
complete description in K. Ivanov (March 2013).
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Several hundreds of random ENDF files for transport + depletion

• 3 Major actinides:235U, 238U, 239Pu,
• 1 Thermal scattering data: H in H2O,

• 12 Fission yields:234,235,236,238U, 239,240,241Pu,237Np, 241,243Am, 243,244Cm,
• 13 Minor actinides:234,236,237U, 237Np, 238,240,241,242Pu,241,242g,243Am, 242,245Cm
• 138 fission products:72−74,76Ge,75As, 76−80,82Se,79,81Br, 80−84,86Kr, 85,87Rb,

86−88,92Sr,89Y, 93,95Zr, 94,95Nb, 95−97Mo, 99Tc, 99−104,106Ru,103,105,106Rh,
104−108,110Pd,109Ag, 111−114,116Cd,113,115In, 115,117−119,126Sn,121,123,125Sb,
122−128,130Te,127,129,135I, 128,130−132,134−136Xe, 133−137Cs,134−138Ba,140La,
140,142Ce,141,144Pr,142−146,148,150Nd, 147−149Pm,147,149−152,154Sm,151−156Eu,
152,154−158,160Gd,159,160Tb, 160−164Dy, 165Ho, 166,167Er.

Calculated quantities: k∞, rr, macroscopic cross sections (2 groups), ADF, Number
densities, relative power pin distribution



Results on k∞
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Burn-up (GWd/MTU)
0 0.2 10 20 30 40

k∞ 1.39 1.35 1.26 1.17 1.09 1.02
Order
1. 235U 235U 235U 238U 235U 239Pu
2. 238U 238U 238U 235U 238U 235U
3. H in H2O H in H2O H in H2O H in H2O 239Pu 238U

Uncertainties (in %) coming from
235U 0.56 0.53 0.44 0.40 0.37 0.34
238U 0.41 0.42 0.42 0.42 0.35 0.31
239Pu - - 0.15 0.25 0.32 0.38
H in H2O 0.14 0.12 0.24 0.30 0.30 0.28
Minor Act. - - 0.03 0.03 0.06 0.07
Fiss. Yiel. - 0.11 0.17 0.22 0.26 0.31
Lumped F.P. - 0.05 0.07 0.10 0.14 0.14
Total 0.71 0.70 0.70 0.74 0.74 0.75



Results on reaction rates
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Burn-up (GWd/MTU) (main contributor)
0 0.2 10 20 30 40

235U(n,γ) 235U 235U 235U 235U 235U 235U
238U(n,γ) 238U 238 238U 238U 238U 238U
239Pu(n,γ) H in H2O H in H2O H in H2O H in H2O H in H2O 239Pu
240Pu(n,γ) H in H2O H in H2O H in H2O H in H2O H in H2O H in H2O
241Pu(n,γ) 235U 235U 235U Minor Act. 238U 238U
235U(n,f) 235U 235U 235U 238U 238U 238U
238U(n,f) 235U 235U 235U 235U 235U 235U
239Pu(n,f) H in H2O H in H2O H in H2O H in H2O 239Pu 239Pu
240Pu(n,f) 235U 235U 235U 235U 235U 235U
241Pu(n,f) 235U 235U 235U 235U 238U 238U

Total uncertainties (due to transport data and fission yields, in %) for
235Un,γ 2.06 2.04 2.03 2.14 2.30 2.56
238Un,γ 1.82 1.81 1.72 1.70 1.49 1.31
239Pun,γ 2.68 2.64 2.13 1.96 1.95 2.04
240Pun,γ 4.89 5.11 4.93 4.55 4.54 4.66
241Pun,γ 1.80 2.07 1.70 1.67 1.85 2.13
235Un, f 0.57 0.59 0.79 1.17 1.58 2.10
238Un, f 7.38 7.41 5.78 4.94 4.41 4.10
239Pun, f 2.24 2.21 2.22 2.12 2.17 2.36
240Pun, f 3.08 3.11 2.53 2.20 2.02 1.81
241Pun, f 1.60 1.59 1.32 1.33 1.56 1.93



Results on macroscopic cross sections
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Burn-up (GWd/MTU) (main contributor)
0 0.2 10 20 30 40

Σabs1
235U 235U 235U 238U 238U 238U

Σabs2 H in H2O H in H2O H in H2O 238U 238U 238U
Σfiss1

235U 235U 235U 235U 235U 235U
Σfiss2

235U 235U 235U 235U 235U 238U
νΣfiss1

235U 235U 235U 235U 235U 238U
νΣfiss2

235U 235U 235U 235U 235U 238U
Diff1

235U 235U 235U 235U 235U 235U
Diff2 H in H2O H in H2O H in H2O H in H2O H in H2O H in H2O
Σtrn1

235U 235U 235U 235U 235U 235U
Σtrn2 H in H2O H in H2O H in H2O H in H2O H in H2O H in H2O
InvVel1 H in H2O H in H2O H in H2O H in H2O H in H2O H in H2O
InvVel2 H in H2O H in H2O H in H2O H in H2O H in H2O H in H2O



Results on number densities for actinides
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Burn-up (GWd/MTU) (main contributor)
0 0.2 10 20 30 40

234U - Minor Act. Minor Act. Minor Act. Minor Act. Minor Act.
235U - 235U 235U 235U 235 238U
236U - 235U 235U 235U 235 235U
238U - - 238U 238U 238U 238U
237Np - 235U 235U 235U 235 238U
238Pu - 235U 235U 235U Minor Act. Minor Act.
239Pu - 238U 238U 238U 238U 238U
240Pu - Minor Act. 238U 238U H in H2O H in H2O
241Pu - H in H2O H in H2O H in H2O H in H2O H in H2O
242Pu - H in H2O H in H2O H in H2O H in H2O H in H2O
241Am - H in H2O H in H2O H in H2O Minor Act. Minor Act.
243Am - H in H2O H in H2O H in H2O H in H2O H in H2O
242Cm - H in H2O H in H2O H in H2O Minor Act. Minor Act.
244Cm - H in H2O H in H2O H in H2O H in H2O H in H2O



Results on number densities for fission products
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Burn-up (GWd/MTU) (main contributor)
0 0.2 10 20 30 40

90Sr - Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields
95Mo - Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields
99Tc - Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields
101Ru - Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields
103Rh - Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields
109Ag - Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields
129I - Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields
133Xe - Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields
135Xe - Minor Act. Minor Act. Minor Act. Minor Act. Minor Act.
133Cs - Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields
134Cs - Minor Act. Minor Act. Minor Act. Minor Act. Minor Act.
137Cs - Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields
144Ce - Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields
142Nd - Minor Act. Minor Act. Minor Act. Minor Act. Minor Act.
143−148Nd - Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields
147−152Sm - Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields
153−155Eu - Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields
155−158Gd - Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields Fiss. Yields
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Sum
Minor Act.

Fiss. Yields.
Fiss. Prod.

H in H2O
239Pu

238U
235U

k∞ uncertainties

Burn-up (GWd/tHM)

∆
k ∞

(%
)
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Comparison of ∆k∞
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UAM PWR assembly

SFR

VVER MOX

VVER UO2

BWR MOX (w Gd)

BWR UO2 (w Gd)

PWR MOX (4 assemblies)

PWR MOX (1 assembly)

PWR UO2 (w Gd)

PWR UO2 (no Gd)

k∞ uncertainty for different assemblies

Burn-up (GWd/tHM)

∆
k ∞

1.2
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Local power density
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The pin power distribution and burnup of each fuel pin (in GWd/t) as well as the
associated uncertainties is requested with one unique material definition for all pins.
Is that the best ?
We varied all nuclear data separately=⇒ no visible effect

Better to vary all of them together (to be done).
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➪ fast TMC successfully applied for this PWR assembly benchmark,
➪ Transport nuclear data, fission yields and thermal scattering were considered,
➪ Importance of235,238U, 239Pu and thermal scattering (H in H2O),
➪ (and fission yields for number densities),
➪ Minor actinides and fission products are of less importance.
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➪ (and fission yields for number densities),
➪ Minor actinides and fission products are of less importance.

TMC: If we can do a calculation once, we can also do
it a 1000 times, each time with a varying data library.fast TMC:
If we can do a calculation once, we can also get

nuclear data uncertainties in the same time
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