

"Fast Total Monte Carlo" applied to Phase II-2: PWR assembly depletion

C.M. Sciolla and D. Rochman

Nuclear Research and Consultancy Group,

NRG, Petten, The Netherlands

UAM-7 workshop, Paris, France, April 2013

Overview

- ➡ Method: Fast Total Monte Carlo
- Description of the SERPENT model (assembly)
- Considered data in fast TMC

Results

The preliminary report can be found at

ftp://ftp.nrg.eu/pub/www/talys/bib_rochman/uam-phase2.pdf

For each random ENDF file, the benchmark calculation is performed with MCNP. At the end of the *n* calculations, *n* different k_{eff} values are obtained.

$$\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$$

- \mathbf{R} computer time (not human time),
- Successfully applied (criticality, shielding, reactor, burn-up...)
- Most simple path (no additional processing, no covariance required),
- Many spin-offs (TENDL covariances, sensitivity, adjustment...)
- also applicable to fission yields, thermal scattering, pseudo-fission products, all isotopes (...just everything),

- \square computer time (not human time),
- Successfully applied (criticality, shielding, reactor, burn-up...)
- Most simple path (no additional processing, no covariance required),
- Many spin-offs (TENDL covariances, sensitivity, adjustment...)
- also applicable to fission yields, thermal scattering, pseudo-fission products, all isotopes (...just everything),

In TMC:

If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.

- \square computer time (not human time),
- Successfully applied (criticality, shielding, reactor, burn-up...)
- Most simple path (no additional processing, no covariance required),
- Many spin-offs (TENDL covariances, sensitivity, adjustment...)
- also applicable to fission yields, thermal scattering, pseudo-fission products, all isotopes (...just everything),

In TMC:

If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.

Well, then uncertainty propagation with TMC takes $1000 \times \text{longer}$ than a single calculation... (*Each* $\sigma_{\text{statistics}}$ *needs to be small*)

- \square computer time (not human time),
- Successfully applied (criticality, shielding, reactor, burn-up...)
- Most simple path (no additional processing, no covariance required),
- Many spin-offs (TENDL covariances, sensitivity, adjustment...)
- also applicable to fission yields, thermal scattering, pseudo-fission products, all isotopes (...just everything),

In TMC:

If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.

Well, then uncertainty propagation with TMC takes $1000 \times \text{longer}$ than a single calculation... (*Each* $\sigma_{\text{statistics}}$ *needs to be small*) There is at least one solution with Monte Carlo codes: the fast TMC method

New method: fast TMC

UAM-7

If a single calculation takes *m* histories (σ_{stat} small enough), then repeat it *n* times with *m/n* histories, random nuclear data and random seeds.

 $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds.

New m	New method: fast TMC										
If a	single calcula then reprandon $\sigma_{total}^2 =$	ation tal peat it <i>n</i> n nuclea $\sigma_{\text{statistic}}^2$	kes <i>m</i> histo times with ar data and $+\sigma_{nuclear}^{2}$	pries (σ_{st} h m/n hi random r data still	tat small enough), istories, seeds. holds.						
run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k\pm\sigma_{stat}$						
run 1	nuclear data 1	seed s ₁	<i>m/n</i> hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{stat} \sqrt{n}$						

New mo	ethod: fast TMC				No C
If a	single calculation then represented by $\sigma_{total}^2 =$	ation tal peat it <i>n</i> n nuclea $\sigma_{\text{statistic}}^2$	$\frac{1}{2} \cos \frac{m}{2} + \frac{1}{2} \cos \frac{1}$	pries (σ_{sta} n m/n his random r data still	at small enough), stories, seeds. holds.
run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k \pm \sigma_{stat}$
run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{\text{stat}} \sqrt{n}$
run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2 \pm \sigma_2$

New mo	ethod: fast TMC	C			
If a	single calcula then reprandom $\sigma_{total}^2 =$	ation tal peat it <i>n</i> n nuclea $\sigma_{\text{statistic}}^2$	kes <i>m</i> histo times with ar data and $c_s + \sigma_{nuclear}^2$	pries (σ_{sta} n m/n his random r data still	t small enough), stories, seeds. holds.
run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k \pm \sigma_{stat}$
run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{\text{stat}} \sqrt{n}$
run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2 \pm \sigma_2$
• •		• •			• • •
run n	nuclear data <i>n</i>	seed s_n	m/n hist.	T/n sec.	$\mathbf{k}_n \pm \mathbf{\sigma}_n$

New me	ethod: fast TMC	2			
If a	single calculation then reprint random $\sigma_{total}^2 =$	ation tal peat it <i>n</i> n nuclea $\sigma^2_{\text{statistic}}$	kes <i>m</i> histo times with ar data and $c_s + \sigma_{nuclea}^2$	pries (σ_{stat} sm h m/n histori random seed r data still hold	nall enough), es, is. ds.
run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k \pm \sigma_{stat}$
run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{stat} \sqrt{n}$
run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2 \pm \sigma_2$
• •		•			• • •
run n	nuclear data <i>n</i>	seed s_n	m/n hist.	T/n sec.	$\mathbf{k}_n \pm \mathbf{\sigma}_n$
n runs				T sec.	

New mo	ethod: fast TM	С			Nac
If a	single calculation then represented by $\sigma_{total}^2 =$	ation tal peat it <i>n</i> n nuclea $\sigma^2_{\text{statistic}}$	kes <i>m</i> histo times with ar data and $c_s + \sigma_{nuclea}^2$	pries (σ_{sta} h m/n his random r data still	t small enough), stories, seeds. holds.
run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k \pm \sigma_{stat}$
run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{stat} \sqrt{n}$
run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2 \pm \sigma_2$
• •		•			• •
run <i>n</i>	nuclear data <i>n</i>	seed s_n	m/n hist.	T/n sec.	$\mathbf{k}_n \pm \mathbf{\sigma}_n$
n runs				T sec.	
		$\left\{ \begin{array}{c} \sigma_{total}^2 \\ \end{array} \right.$	$=\frac{1}{n-1}\sum_{i=1}^{n}$	$\sum_{i=1}^{n} \left(k_i - \overline{k} \right)^2 \bigstar$	
UAM-7					5 / 16

New me	ethod: fast TM	С			Nipo
If a	single calculation then reprint random σ^2 is the second secon	ation tal peat it <i>n</i> n nuclea σ^2	$\cos m$ histo times with ar data and $+\sigma^2$	pries (σ_{sta} h m/n his random	at small enough), stories, seeds. holds.
		statistic	s ' nuclear	r data	
	ENDF/B-VII.1	seed s ₀	<i>m</i> mistories	$\frac{1 \text{ sec.}}{T/n \cos 2}$	$\frac{\mathbf{K} \pm \mathbf{O}_{\text{stat}}}{\mathbf{k} \pm \mathbf{\sigma}_{\text{stat}}}$
	nuclear data 1	seed s ₁	m/n mist.		$K_1 \pm O_1 \sim O_{\text{stat}} \sqrt{n}$
run 2	nuclear data 2	seed s ₂	m/n mist.	1/n sec.	$K_2 \pm O_2$
• •		• •			
run <i>n</i>	nuclear data <i>n</i>	seed s_n	m/n hist.	T/n sec.	$\mathbf{k}_n \pm \mathbf{\sigma}_n$
n runs		$\begin{cases} \sigma_{total}^{2} \\ \sigma_{statistic}^{2} \end{cases}$	$= \frac{1}{n-1} \sum_{i=1}^{n} \sum_{i=1}^{n} \sigma$	T sec. $\int_{1}^{2} (k_i - \overline{k})^2 \checkmark$	
					5/10

Description of the SERPENT model (assembly)

The fuel test is a typical fuel rod from TMI-1 PWR, 15x15 assembly design, see complete description in K. Ivanov (March 2013).

Figure 19: TMI-1 FA Pin Layout

Table 47: TMI-1 FA Pin Descriptions

Marker	Rod Type
g	2.0 w/o Gd 4.12% 235U pin
G	Guide Tube
I	Instrumentation Tube
-	4.12% 235U fuel pin

Several hundreds of random ENDF files for transport + depletion

- 3 Major actinides: ²³⁵U, ²³⁸U, ²³⁹Pu,
- 1 Thermal scattering data: H in H₂O,
- 12 Fission yields: ^{234,235,236,238}U, ^{239,240,241}Pu, ²³⁷Np, ^{241,243}Am, ^{243,244}Cm,
- 13 Minor actinides: ^{234,236,237}U, ²³⁷Np, ^{238,240,241,242}Pu, ^{241,242g,243}Am, ^{242,245}Cm
- 138 fission products: $^{72-74,76}$ Ge, 75 As, $^{76-80,82}$ Se, 79,81 Br, $^{80-84,86}$ Kr, 85,87 Rb, $^{86-88,92}$ Sr, 89 Y, 93,95 Zr, 94,95 Nb, $^{95-97}$ Mo, 99 Tc, $^{99-104,106}$ Ru, 103,105,106 Rh, $^{104-108,110}$ Pd, 109 Ag, $^{111-114,116}$ Cd, 113,115 In, $^{115,117-119,126}$ Sn, 121,123,125 Sb, $^{122-128,130}$ Te, 127,129,135 I, $^{128,130-132,134-136}$ Xe, $^{133-137}$ Cs, $^{134-138}$ Ba, 140 La, 140,142 Ce, 141,144 Pr, $^{142-146,148,150}$ Nd, $^{147-149}$ Pm, $^{147,149-152,154}$ Sm, $^{151-156}$ Eu, $^{152,154-158,160}$ Gd, 159,160 Tb, $^{160-164}$ Dy, 165 Ho, 166,167 Er.

Calculated quantities: k_{∞} , rr, macroscopic cross sections (2 groups), ADF, Number densities, relative power pin distribution

Results on k_{∞}

esults on k_{∞}						- N	RG
		Bu	ırn-up (GWd	/MTU)			
	0	0.2	10	20	30	40	
k _∞	1.39	1.35	1.26	1.17	1.09	1.02	
Order							
1.	²³⁵ U	²³⁵ U	²³⁵ U	²³⁸ U	²³⁵ U	²³⁹ Pu	
2.	²³⁸ U	²³⁸ U	²³⁸ U	²³⁵ U	²³⁸ U	²³⁵ U	
3.	H in H ₂ O	²³⁹ Pu	²³⁸ U				
	Uno	certainties (in	n %) coming	from			
²³⁵ U	0.56	0.53	0.44	0.40	0.37	0.34	
²³⁸ U	0.41	0.42	0.42	0.42	0.35	0.31	
²³⁹ Pu	-	-	0.15	0.25	0.32	0.38	
H in H ₂ O	0.14	0.12	0.24	0.30	0.30	0.28	
Minor Act.	-	-	0.03	0.03	0.06	0.07	
Fiss. Yiel.	-	0.11	0.17	0.22	0.26	0.31	
Lumped F.P.	-	0.05	0.07	0.10	0.14	0.14	
Total	0.71	0.70	0.70	0.74	0.74	0.75	

Results on reaction rates

s on reac	tion rates	8					-
		Burn-	up (GWd/MT	U) (main contri	ibutor)		
	0	0.2	10	20	30	40	
235 U(n, γ)	²³⁵ U						
238 U(n, γ)	²³⁸ U	238	²³⁸ U	²³⁸ U	²³⁸ U	²³⁸ U	
239 Pu(n, γ)	H in H ₂ O	²³⁹ Pu					
240 Pu(n, γ)	H in H ₂ O						
241 Pu(n, γ)	²³⁵ U	²³⁵ U	²³⁵ U	Minor Act.	²³⁸ U	²³⁸ U	
235 U(n,f)	²³⁵ U	²³⁵ U	²³⁵ U	²³⁸ U	²³⁸ U	²³⁸ U	
238 U(n,f)	²³⁵ U						
²³⁹ Pu(n,f)	H in H ₂ O	²³⁹ Pu	²³⁹ Pu				
240 Pu(n,f)	²³⁵ U						
241 Pu(n,f)	²³⁵ U	²³⁵ U	²³⁵ U	²³⁵ U	²³⁸ U	²³⁸ U	
	Total uncerta	inties (due to	transport data	and fission yie	lds, in %) for		
$^{235}U_{n.\gamma}$	2.06	2.04	2.03	2.14	2.30	2.56	
$^{238}\mathrm{U}_{n,\gamma}$	1.82	1.81	1.72	1.70	1.49	1.31	
239 Pu _{n,y}	2.68	2.64	2.13	1.96	1.95	2.04	
240 Pu _{n, Y}	4.89	5.11	4.93	4.55	4.54	4.66	
241 Pu _{<i>n</i>,γ}	1.80	2.07	1.70	1.67	1.85	2.13	
$^{235}U_{n,f}$	0.57	0.59	0.79	1.17	1.58	2.10	
238 U _{<i>n</i>,<i>f</i>}	7.38	7.41	5.78	4.94	4.41	4.10	
239 Pu _{n,f}	2.24	2.21	2.22	2.12	2.17	2.36	
240 Pu _{n,f}	3.08	3.11	2.53	2.20	2.02	1.81	
241 Pu _{n,f}	1.60	1.59	1.32	1.33	1.56	1.93	

9/16

Results on macroscopic cross sections

Results or	ts on macroscopic cross sections										
		Burn-up (GWd/MTU) (main contributor)									
	0	0.2	10	20	30	40					
Σ_{abs1}	²³⁵ U	²³⁵ U	²³⁵ U	²³⁸ U	²³⁸ U	²³⁸ U					
Σ_{abs2}	H in H_2O	H in H ₂ O	H in H ₂ O	²³⁸ U	²³⁸ U	²³⁸ U					
$\Sigma_{\rm fiss1}$	²³⁵ U	²³⁵ U	²³⁵ U	²³⁵ U	²³⁵ U	²³⁵ U					
$\Sigma_{\rm fiss2}$	²³⁵ U	²³⁵ U	²³⁵ U	²³⁵ U	²³⁵ U	²³⁸ U					
$\nu \Sigma_{\rm fiss1}$	²³⁵ U	²³⁵ U	²³⁵ U	²³⁵ U	²³⁵ U	²³⁸ U					
$\nu \Sigma_{\rm fiss2}$	²³⁵ U	²³⁵ U	²³⁵ U	²³⁵ U	²³⁵ U	²³⁸ U					
D _{iff1}	²³⁵ U	²³⁵ U	²³⁵ U	²³⁵ U	²³⁵ U	²³⁵ U					
D _{iff2}	H in H ₂ O	H in H ₂ O	H in H ₂ O	H in H ₂ O	H in H ₂ O	H in H ₂ O					
Σ_{trn1}	²³⁵ U	²³⁵ U	²³⁵ U	²³⁵ U	²³⁵ U	²³⁵ U					
Σ_{trn2}	H in H ₂ O	H in H ₂ O	H in H ₂ O	H in H ₂ O	H in H ₂ O	H in H ₂ O					
InvVel ₁	H in H ₂ O	H in H ₂ O	H in H ₂ O	H in H ₂ O	H in H ₂ O	H in H ₂ O					
InvVel ₂	H in H ₂ O	H in H ₂ O	H in H ₂ O	H in H ₂ O	H in H ₂ O	H in H ₂ O					

Results on number densities for actinides

ults on number densities for actinides											
						r	IRG				
	Burn-up (GWd/MTU) (main contributor)										
	0	0.2	10	20	30	40					
²³⁴ U	-	Minor Act.									
²³⁵ U	-	²³⁵ U	²³⁵ U	²³⁵ U	235	²³⁸ U					
²³⁶ U	-	²³⁵ U	²³⁵ U	²³⁵ U	235	²³⁵ U					
²³⁸ U	-	-	²³⁸ U	²³⁸ U	²³⁸ U	²³⁸ U					
²³⁷ Np	-	²³⁵ U	²³⁵ U	²³⁵ U	235	²³⁸ U					
²³⁸ Pu	-	²³⁵ U	²³⁵ U	²³⁵ U	Minor Act.	Minor Act.					
²³⁹ Pu	_	²³⁸ U									
²⁴⁰ Pu	-	Minor Act.	²³⁸ U	²³⁸ U	H in H_2O	H in H ₂ O					
²⁴¹ Pu	_	H in H ₂ O									
²⁴² Pu	-	H in H ₂ O									
²⁴¹ Am	_	H in H ₂ O	H in H ₂ O	H in H ₂ O	Minor Act.	Minor Act.					
²⁴³ Am	_	H in H ₂ O									
²⁴² Cm	-	H in H ₂ O	H in H ₂ O	H in H ₂ O	Minor Act.	Minor Act.					
²⁴⁴ Cm	-	H in H ₂ O									

Results on number densities for fission products

- N	RG

	Burn-up (GWd/MTU) (main contributor)					
	0	0.2	10	20	30	40
⁹⁰ Sr	-	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields
⁹⁵ Mo	-	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields
⁹⁹ Tc	-	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields
101 Ru	-	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields
¹⁰³ Rh	-	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields
¹⁰⁹ Ag	-	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields
¹²⁹ I	-	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields
¹³³ Xe	-	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields
¹³⁵ Xe	-	Minor Act.	Minor Act.	Minor Act.	Minor Act.	Minor Act.
¹³³ Cs	_	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields
^{134}Cs	_	Minor Act.	Minor Act.	Minor Act.	Minor Act.	Minor Act.
¹³⁷ Cs	_	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields
¹⁴⁴ Ce	_	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields
¹⁴² Nd	_	Minor Act.	Minor Act.	Minor Act.	Minor Act.	Minor Act.
^{143–148} Nd	_	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields
$^{147-152}$ Sm	-	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields
^{153–155} Eu	_	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields
^{155–158} Gd	_	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Yields
100		,	4 · · · · · · · · · · · · · · · · · · ·		<i>,</i> , , , , , , , , , , , , , , , , , ,	

/ 16

Example for k_∞

Comparison of Δk_∞

Local power density

UAM-7

NG

The pin power distribution and burnup of each fuel pin (in GWd/t) as well as the associated uncertainties is requested with one unique material definition for all pins. Is that the best ? We varied all nuclear data separately \implies no visible effect

Better to vary all of them together (to be done).

Conclusions

- fast TMC successfully applied for this PWR assembly benchmark,
- Transport nuclear data, fission yields and thermal scattering were considered,
- Importance of 235,238 U, 239 Pu and thermal scattering (H in H₂O),
- \checkmark (and fission yields for number densities),
- ➡ Minor actinides and fission products are of less importance.

Conclusions

- fast TMC successfully applied for this PWR assembly benchmark,
- Transport nuclear data, fission yields and thermal scattering were considered,
- Importance of 235,238 U, 239 Pu and thermal scattering (H in H₂O),
- (and fission yields for number densities),
- ➡ Minor actinides and fission products are of less importance.

TMC: If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.

Conclusions

- fast TMC successfully applied for this PWR assembly benchmark,
- Transport nuclear data, fission yields and thermal scattering were considered,
- Importance of 235,238 U, 239 Pu and thermal scattering (H in H₂O),
- (and fission yields for number densities),
- ➡ Minor actinides and fission products are of less importance.

