

"Total Monte Carlo" applied to Phase I-1: burn-up calculation

D. Rochman and C.M. Sciolla

Nuclear Research and Consultancy Group,

NRG, Petten, The Netherlands

UAM-6 workshop, Karlsruhe, Germany, May 2012

Overview

- ➡ Method: Total Monte Carlo (TMC)
- Description of the SERPENT model (Fuel pin-cell)
- Considered data in TMC

Results

The complete report (NRG-113696) can be found at

ftp://ftp.nrg.eu/pub/www/talys/bib_rochman/tmc.nrg.pdf

effects: $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$.

Example of random nuclear data for ²³⁹**Pu**

Examples with ⁶³Cu(n,2n) and ⁶⁵Cu(n,el)

Angle (deg)

Angle (deg)

Angle (deg)

Angle (deg)

Random nuclear data come from TENDL-2011. AutoTalys TASMAN **TENDL-2011** n TANES n TAFIS n TALYS n TARES input files input files input files input files TALYS TARES TANES TAFIS TALYS-based Evaluated Nuclear Data Library n Fission n Resonance n TALYS $n \nu$ -bar Neutron Spect. Parameters output files output files output files output files TEFAL 1 ENDF file ENDF $n \times$ random files covariances www.talys.eu/tendl-2011

A.J. Koning and D. Rochman

Nuclear Research and Consultancy Group (NRG)

Description of the SERPENT model (Fuel pin-cell)

The fuel test is a typical fuel rod from TMI-1 PWR, 15x15 assembly design.

Hot Full Power conditions		Configuration			
Fuel temperature (K)	900	Unit cell pitch (mm)	14.427		
Cladding temperature (K)	600	Fuel pellet diameter (mm)	9.391		
Moderator (coolant) temperature (K)	562	Fuel pellet material	UO_2		
Moderator (coolant) density (g/cm^3)	0.7484	Fuel density (g/cm ³)	10.283		
Reactor power (MWt)	2772	Fuel enrichment (w/o)	4.85		
Number of assembly in reactor core	177	Cladding outside diameter (mm)	10.928		
Number of fuel rods/fuel assembly	208	Cladding thickness (mm)	0.673		
Active core length (mm)	3571.20	Cladding material	Zircaloy-4		
		Cladding density (g/cm ³)	6.55		
		Gap material	He		
		Moderator material	H_2O		

The fuel sample is burned for a unique complete cycle and the lengths of the burn time and cooling time:

Operating cycle	1
Burn time (days)	1825
Final burnup (GWd/MTU)	61.28
Downtime (days)	1870
Specific power (kW/kgU)	33.58

Considered data in TMC

pellet dia			2 %				
fuel enric	hment			3 %			
fuel der	nsity			4 %			
moderator	density			5 %			
Nuclear data	ENDF-6 name	²³⁵ U	²³⁸ U	²³⁷ Np	²³⁹ Pu	²⁴¹ Pu	Lumped fiss. prod.
complete ENDF file	MF1-6,10,12,14	Х	Х		Х		Х
fission yields	MF8	X	Х	Х	Х	Х	
v-bar	MF1	X	Х		Х		
Resonance range	MF2	Х	Х		Х		
Fast range	MF3	Х	Х		Х		
Angular distr.	MF4	Х	Х		Х		
Fission neut. spec.	MF5	Х	Х		Х		
(n,γ)		Х	Х		Х		
(n,f)		Х	Х		Х		
(n,el)		X	Х		Х		

Lumped (138) fission products: $^{72-74,76}$ Ge, 75 As, $^{76-80,82}$ Se, 79,81 Br, $^{80-84,86}$ Kr, 85,87 Rb, $^{86-88,92}$ Sr, 89 Y, 93,95 Zr, 94,95 Nb, $^{95-97}$ Mo, 99 Tc, $^{99-104,106}$ Ru, 103,105,106 Rh, $^{104-108,110}$ Pd, 109 Ag, $^{111-114,116}$ Cd, 113,115 In, $^{115,117-119,126}$ Sn, 121,123,125 Sb, $^{122-128,130}$ Te, 127,129,135 I, $^{128,130-132,134-136}$ Xe, $^{133-137}$ Cs, $^{134-138}$ Ba, 140 La, 140,142 Ce, 141,144 Pr, $^{142-146,148,150}$ Nd, $^{147-149}$ Pm, $^{147,149-152,154}$ Sm, $^{151-156}$ Eu, $^{152,154-158,160}$ Gd, 159,160 Tb, $^{160-164}$ Dy, 165 Ho, 166,167 Er.

Results on k_{∞}

Results on	\mathbf{k}_{∞}						Nac
			В	urn-up (GWd/M	ITU)		
	0	10	20	30	40	50	60
k∞	1.41e+00	1.25e+00	1.16e+00	1.08e+00	1.02e+00	9.55e-01	9.01e-01
Order							
1.	²³⁵ U	²³⁸ U	²³⁸ U	²³⁸ U	²³⁸ U	²³⁹ Pu	²³⁹ Pu
2.	²³⁸ U	²³⁵ U	²³⁵ U	²³⁵ U	²³⁵ U	Fiss. Yields	Fiss. Yields
3.		Fiss. Prod.	Fiss. Prod.	²³⁹ Pu	²³⁹ Pu	²³⁸ U	²³⁸ U
4.		²³⁹ Pu	²³⁹ Pu	Fiss. Prod.	Fiss. Yields	Fiss. Prod.	Fiss. Prod.
5.		Fiss. Yields	Fiss. Yields	Fiss. Yields	Fiss. Prod.	²³⁵ U	²³⁵ U
			Uncertainties (in	n %) coming fro	om		
²³⁵ U	0.50	0.43	0.39	0.35	0.32	0.28	0.24
²³⁸ U	0.46	0.47	0.44	0.40	0.35	0.33	0.36
²³⁹ Pu	0.05	0.15	0.26	0.33	0.39	0.44	0.47
Fiss. Yiel.	0.00	0.21	0.25	0.29	0.32	0.35	0.36
Lumped F.P.	0.00	0.37	0.36	0.31	0.31	0.29	0.28
Total	0.68	0.79	0.78	0.76	0.76	0.76	0.79

Results on reaction rates

Results on	reaction	rates					<u> </u>
							— N 3
			Burr	n-up (GWd/M	ΓU)		6
	0	10	20	30	40	50	60
$\operatorname{rr}^{235}\mathrm{U}(\mathrm{n},\gamma)$	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	235 U(n, γ)	235 U(n, γ)
rr ²³⁸ U(n,γ)	²³⁸ U(n,el)	²³⁸ U(n,γ)	²³⁸ U(n,γ)	²³⁸ U(n,γ)	²³⁸ U(n,γ)	²³⁸ U(n,γ)	238 U(n, γ)
rr ²³⁹ Pu(n, γ)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁸ U(n,γ)	²³⁵ U(n,γ)	238 U(n, γ)
rr ²⁴⁰ Pu(n, γ)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁸ U(n,γ)	²³⁸ U(n,γ)	²³⁸ U(n,γ)	238 U(n, γ)
rr ²⁴¹ Pu(n, γ)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁸ U(n,γ)	²³⁸ U(n,γ)	²³⁸ U(n,γ)
rr ²³⁵ U(n,f)	²³⁵ U MF5	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U MF5	238 U(n, γ)	238 U(n, γ)	238 U(n, γ)
rr ²³⁸ U(n,f)	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁹ Pu MF5
rr ²³⁹ Pu(n,f)	²³⁹ Pu(n,el)	²³⁹ Pu(n,el)	²³⁹ Pu(n,el)	²³⁹ Pu(n,f)	²³⁹ Pu(n,f)	²³⁹ Pu(n,f)	²³⁹ Pu(n,f)
rr ²⁴⁰ Pu(n,f)	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁹ Pu MF5
rr ²⁴¹ Pu(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁸ U(n,γ)	²³⁸ U(n,γ)	²³⁸ U(n,γ)
	Total	uncertainties (d	ue to transport	data and fission	on yields, in %) for	
rr 235 U(n, γ)	2.05	2.04	2.07	2.14	2.31	2.54	2.79
rr 238 U(n, γ)	1.75	1.74	1.69	1.65	1.55	1.37	1.25
rr 239 Pu(n, γ)	1.22	1.12	1.09	1.13	1.36	1.68	2.05
rr ²⁴⁰ Pu(n, γ)	0.64	0.98	0.64	0.72	0.96	1.27	1.61
rr ²⁴¹ Pu(n, γ)	1.35	1.20	1.16	1.17	1.38	1.69	2.09
rr ²³⁵ U(n,f)	0.52	0.56	0.69	0.87	1.21	1.61	2.07
rr ²³⁸ U(n,f)	6.61	5.91	5.29	4.84	4.31	3.91	3.70
rr ²³⁹ Pu(n,f)	1.99	1.84	1.77	1.77	1.92	2.17	2.53
rr ²⁴⁰ Pu(n,f)	2.68	2.45	2.27	2.18	2.14	2.22	2.49
rr ²⁴¹ Pu(n,f)	1.34	1.21	1.15	1.17	1.36	1.67	2.06

Results on macroscopic cross sections

esults	on macro	scopic cr	oss sectio	ns			N	
			Βι	ırn-up (GWd/N	ITU)			
	0	10	20	30	40	50	60	
Σ_{abs1}	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁹ Pu MF1	²³⁹ Pu MF1	238 U(n, γ)	²³⁸ U(n,γ)	
Σ_{abs2}	²³⁵ U(n,el)	²³⁵ U(n,f)	²³⁵ U(n,f)	235 U(n, γ)	²³⁸ U(n,γ)	$^{238}U(n,\gamma)$	$^{238}U(n,\gamma)$	
Σ_{fiss1}	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁹ Pu MF5	²³⁹ Pu MF5	
$\Sigma_{\rm fiss2}$	²³⁵ U(n,el)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁸ U(n, γ)	²³⁸ U(n, γ)	²³⁸ U(n,γ)	
$\nu \Sigma_{\rm fiss1}$	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁵ U(n,f)	238 U v-bar	²³⁸ U MF1	²³⁸ U MF1	
$\nu \Sigma_{\rm fiss2}$	²³⁵ U(n,el)	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁸ U MF1	²³⁸ U(n, γ)	²³⁸ U(n,γ)	²³⁸ U(n,γ)	
D _{iff1}	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁹ Pu MF5	²³⁹ Pu MF5	
D _{iff2}	²³⁸ U MF4	F. P.	F. P.	F. P.	F. P.	²³⁵ U MF5	²³⁹ Pu MF5	
	To	otal uncertainti	es (due to tran	sport data and	fission yields, in	n %) for		-
Σ_{abs1}	1.08	1.11	1.09	1.04	1.07	1.06	1.08	1
Σ_{abs2}	1.12	1.06	1.13	1.28	1.50	1.74	2.00	
$\Sigma_{\rm fiss1}$	1.71	1.75	1.74	1.73	1.76	1.83	2.00	
$\Sigma_{\mathrm{fiss}2}$	1.63	1.44	1.40	1.52	1.73	2.03	2.36	
$\nu \Sigma_{\rm fiss1}$	1.98	2.01	2.02	2.07	2.15	2.28	2.46	
$\nu \Sigma_{fiss2}$	1.63	1.40	1.39	1.51	1.74	2.03	2.37	
D _{iff1}	1.88	1.49	1.32	1.19	1.10	1.06	1.01	
D _{iff2}	1.22	1.63	1.62	1.62	1.56	1.56	1.56	

12 / 20

Results on number densities for actinides

suits					ues			— N
			Burn-ı	ıp (GWd/MTU	J)		Cooling ti	me (years)
	0	20	30	40	50	60	0	300
^{.34} U	-	²³⁵ U(n,f)	235 U(n, γ)					
³⁵ U	-	²³⁵ U(n,f)	²³⁵ U(n,f)	238 U(n, γ)	238 U(n, γ)	238 U(n, γ)	²³⁸ U(n, γ)	238 U(n, γ)
³⁶ U	-	²³⁵ U(n,γ)	235 U(n, γ)					
³⁸ U	-	238 U(n, γ)						
³⁷ Np	-	²³⁵ U MF5	235 U(n, γ)	235 U(n, γ)				
^{.38} Pu	-	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U MF5	²³⁵ U(n,γ)	$^{235}U(n,\gamma)$	235 U(n, γ)
³⁹ Pu	-	²³⁸ U(n,γ)	238 U(n, γ)	²³⁸ U(n,γ)	238 U(n, γ)			
⁴⁰ Pu	-	²³⁵ U(n,f)	²³⁹ Pu(n,f)	239 Pu(n,f)	²³⁹ Pu(n,f)	²³⁹ Pu(n,f)	²³⁹ Pu(n,f)	²³⁹ Pu(n,f)
⁴¹ Pu	-	²³⁵ U(n,f)	²³⁵ U(n,f)	²³⁹ Pu(n,f)	²³⁹ Pu(n,f)	²³⁸ U(n, y)	²³⁸ U(n, γ)	²³⁹ Pu(n,f)
⁴¹ Am	-	²³⁵ U(n,f)	²³⁸ U(n,γ)	²³⁸ U(n, y)	²³⁸ U(n,γ)	²³⁸ U(n,γ)	²³⁸ U(n,γ)	²³⁸ U(n,γ)
		Total u	incertainties (d	lue to transpor	t data and fissi	on yields, in %	b) for	
^{.34} U	-	0.12	0.41	0.55	0.69	0.93	0.97	1.90
³⁵ U	-	0.17	0.72	1.21	1.88	2.79	2.93	2.92
³⁶ U	-	1.98	1.96	1.95	1.93	1.91	1.90	1.88
³⁸ U	-	0.01	0.02	0.03	0.04	0.04	0.04	0.04
³⁷ Np	-	9.50	4.13	3.39	2.98	2.74	2.72	1.83
³⁸ Pu	-	12.1	4.98	3.83	3.16	2.74	2.71	2.53
³⁹ Pu	-	1.78	2.30	2.60	2.91	3.22	3.26	3.22
⁴⁰ Pu	-	1.93	1.95	2.05	2.22	2.41	2.43	2.34
⁴¹ Pu	-	2.04	1.52	1.62	1.88	2.19	2.23	2.47
⁴¹ Am	-	2.11	1.63	1.90	2.44	3.14	3.24	2.26

Results on number densities for fission products

	Burn-up (GWd/MTU) Cooling time (ye										
	0	10	30	40	50	60	0	300			
⁹⁹ Tc	-	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.			
¹³³ Cs	-	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.			
¹⁴⁰ Ce	-	²³⁵ U F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.			
¹⁴³ Nd	-	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.			
¹⁴⁷ Sm	-	²³⁵ U F.Y.	²³⁵ U F.Y.	F.P.	F.P.	F.P.	F.P.	F.P.			
¹⁴⁹ Sm	-	²³⁵ U F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.			
¹⁵¹ Sm	-	²³⁵ U F.Y.	F.P.	F.P.	F.P.	F.P.	F.P.	F.P.			
¹⁵⁴ Sm	-	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.	²³⁹ Pu F.Y.			
¹⁵³ Eu	-	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.	F.P.	F.P.	F.P.			
¹⁵⁵ Gd	-	F.P.	F.P.	F.P.	F.P.	²³⁵ U F.Y.	²³⁵ U F.Y.	²³⁵ U F.Y.			
		Total ı	uncertainties (due to transpor	rt data and fiss	ion yields, in ^o	%) for				
⁹⁹ Tc	-	10.4	9.41	9.19	9.10	9.11	9.12	9.12			
^{133}Cs	-	3.50	3.74	4.16	4.72	5.39	5.47	5.45			
¹⁴⁰ Ce	-	2.55	2.78	2.95	3.14	3.34	3.37	3.38			
¹⁴³ Nd	-	4.35	4.93	5.42	5.98	6.59	6.67	6.65			
¹⁴⁷ Sm	-	11.4	20.6	25.0	28.7	31.7	32.0	23.8			
¹⁴⁹ Sm	-	11.4	10.8	10.7	11.0	11.3	11.4	10.9			
¹⁵¹ Sm	-	26.6	22.5	21.5	20.9	20.5	20.5	20.1			
¹⁵⁴ Sm	-	26.2	20.6	19.4	18.6	18.1	18.1	18.1			
¹⁵³ Eu	-	13.8	12.1	12.5	12.9	13.3	13.4	13.3			
¹⁵⁵ Gd	-	27.0	22.4	22.4	22.5	22.8	23.0	11.0			

Example for k_{∞}

Example for reaction rates

UAM-6

16 / 20

Example for macroscopic cross sections

Example for number densities

Example for number densities

Conclusions

- TMC successfully applied for this PWR benchmark,
- Transport nuclear data, fission yields and engineering quantities were considered,
- with 235,238 U, 239,241 Pu, 237 Np and lumped fission products.

If we can do a calculation once, we can also do

it a 1000 times, each time with a varying data library.