

TMC vs. perturbation

and other applications

D. Rochman and A.J. Koning

Nuclear Research and Consultancy Group,

NRG, Petten, The Netherlands

Rochman

Uppsala TMC meeting, April 2013

Contents

- ① Short introduction to nuclear data uncertainties
- 2 Outcomes of the approach (TMC is one of them)
- **③** *TMC vs. perturbation*
- **④** Examples for real cases
- **5** *Fast TMC*
- 6 Conclusions

All slides can be found at:

Uppsala 2013

ftp://ftp.nrg.eu/pub/www/talys/bib_rochman/presentation.html.

Introduction to nuclear data uncertainties

General comments:

- I uncertainties are not errors (and vice versa),
- I uncertainties should now be given with all data (seems obvious ?),
- III they are related to risks, quality of work, money, perception, fear, safety...

Uncertainty \rightleftharpoons safety \rightleftharpoons professionalism

- ₩ True uncertainties do not exist ! They are the reflection of our knowledge and methods.
- I All the above for covariances
- Image: The importance of nuclear data uncertainties should be checked. If believed negligible, please prove it !

Backbone of our methodology: REPRODUCIBILITY

TMC for nuclear data uncertainty propagation, what else ?

- \bigcirc + No covariance matrices (no 2 Gb files) but every possible cross correlation included,
- \bigcirc + No approximation but true probability distribution,
- \bigcirc + Only essential info for an evaluation is stored, (
 - + No perturbation code necessary, only "essential" codes,
 - + Feedback to model parameters,
 - + Full reactor core calculation and transient,
- \bigcirc + Also applicable to fission yields, thermal scattering, pseudo-fission products, all isotopes (...just everything),
- (+ Other variants: AREVA (NUDUNA), GRS (XSUSA), CIEMAT (ACAB), PSI (NUSS), CNRS Grenoble..., based on covariance files,
- (\cdot) + Many spin-offs (TENDL covariances, sensitivity, adjustment...)

 $(\dot{})$ + QA.

 \bigcirc

(

- Needs discipline to reproduce,
- Memory and computer time (not human time),
- Need mentality change.

For each random ENDF file, the benchmark calculation is performed with MCNP. At the end of the *n* calculations, *n* different k_{eff} values are obtained.

 $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$

Example with ²³⁸U: Monte Carlo calculations

Examples with ⁶³Cu(n,2n) and ⁶⁵Cu(n,el)

TMC versus Perturbation method

- ① Obtain uncertainties on large-scale models due to nuclear data uncertainties
- ② Systematic approach, reliable and reproducable

Solution (1): Total Monte Carlo

Solution (2): Perturbation method

Uppsala 2013

 \implies MCNP+ Perturbation cards+covariance files

TMC versus Perturbation: Results

Comparison TMC-Perturbation methods for a few k_{eff} benchmarks. The ratio in the last column is "TMC over Perturbation".

		Total Monte Carlo	Perturbation	Ratio
Benchmark	Isotopes	Uncertainty	Uncertainty	
		due to nuclear	due to nuclear	
		data (pcm)	data (pcm)	
hst39-6	¹⁹ F	330	290	1.16
hmf7-34	¹⁹ F	350	290	1.21
ict3-132	90 Zr	190	150	1.29
hmf57-1	²⁰⁸ Pb	500	410	1.22
pmf2	²³⁹ Pu	840	720	1.16
pmf2	²⁴⁰ Pu	790	650	1.21

Results: Details of the TMC-Perturbation methods for ^{239,240}Pu k_{eff} benchmarks

	pn	nf2 ²³⁹ Pu	pmf2 ²⁴⁰ Pu			
	$\Delta \mathbf{k}$	K _{eff} (pcm)	Δk_{eff} (pcm)			
	TMC	Perturbation	TMC	Perturbation		
Total	840	720	790	650		
MF1	400	-	370	-		
(n,inl)	170	140	70	50		
(n,el)	250	240	30	40		
(n,γ)	100	100	30	30		
(n,f)	720	660	730	640		
MF4	20	_	20	_		
MF5	50	_	30	_		
MF6	50	_	30	_		

Considered data in TMC (or fast TMC)

Several hundreds of random ENDF files for transport + depletion

- 3 Major actinides: ²³⁵U, ²³⁸U, ²³⁹Pu,
- Light elements: lighter than oxygen,
- 2 Thermal scattering data: H in H_2O , D in D_2O
- All Fission yields (e.g. ^{234,235,236,238}U, ^{239,240,241}Pu, ²³⁷Np, ^{241,243}Am, ^{243,244}Cm),
- All Minor actinides (e.g. ^{234,236,237}U, ²³⁷Np, ^{238,240,241,242}Pu, Am, Cm),
- All fission products (e.g. from Ge to Er), and decay data,

(fast) TMC can be applied to any input data, propagating uncertainties to any outputs

Several hundreds of random ENDF files for transport + depletion

- 3 Major actinides: ²³⁵U, ²³⁸U, ²³⁹Pu,
- Light elements: lighter than oxygen,
- 2 Thermal scattering data: H in H_2O , D in D_2O
- All Fission yields (e.g. ^{234,235,236,238}U, ^{239,240,241}Pu, ²³⁷Np, ^{241,243}Am, ^{243,244}Cm),
- All Minor actinides (e.g. ^{234,236,237}U, ²³⁷Np, ^{238,240,241,242}Pu, Am, Cm),
- All fission products (e.g. from Ge to Er), and decay data,

(fast) TMC can be applied to any input data, propagating uncertainties to any outputs

TMC was already applied to

- criticality-safety, shielding, pincell/assembly burn-up, activation,
- PWR, BWR, Gen-IV systems,
- UO₂, MOX fuels,
 - MCNP, SERPENT, FISPACT, DRAGON, PANTHER, RELAP-5

Comparison of Δk_{∞} for assemblies and full core (SERPENT)

TMC applied to PWR assembly burn-up calculations with DRAGON N

Example of TMC for the impact of the matrix fuel

PWR MOX assembly uncertainties

- 1 MOX assembly surrounded by UO₂ assemblies,
- Burn-up calculated with SERPENT,
- All major nuclear data taken into account.

Effect of H in H₂O for a full core PWR (courtesy of O. Cabellos, UPM, Spain)

Method: TMC applied to COBAYA (3D multigroup core calculations) + SIMULA (coupled neutronic-thermohydraulics 3D core calculations)

		NDU TSII	J STR UPM	IALE	S				IJ	I.2 P\	NR p	roble	em de	escri	ption
PWR (WES	STIN	GHO	USE)	, 31	oops	, 15	7 FA, p	ower	2775. N	1Wth	FUEL	TYPE	w/o(%)	WABAS
1,4	CODE												1 OFA	2.10	0
	1	2	3	4	5	6	7	8					2 OFA	3.10	0
1	1	13	4	21	6	21	16	14					A OFA	3.24	0
2	13	11	15	2	16	6	20	7					F OFA	3.24	0
3	4	15	3	21	8	22	19						E OFA	3.24	0
4	21	2	21	9	18	20	5						C OFA	3.21	0
5	6	16	8	18	12	17							OFA	3.24	e e e e e e e e e e e e e e e e e e e
6	21	6	22	20	17								o ofa	3.24	0
7	16	20	19	10									OFA OFA	2.24	ő
8	14	7										3	1 OFA	2.24	2
													2 355	2 60	ç
ų												1	2 ALT	3.60	8
AVE. BURN	IUP PI	ER FU	EL AS:	SEMBL	2		5	6	7	0		1	4 AFF	3 60	0
1 1	18.13	7 11.	2 662 2'	3 7.397	0.0	0 30	.867	0.000	, 14.984	11.662		1	5 AFF	3 60	0
2 1	1.662	2 16.	188 1	3.130	28.9	02 12	.155	28.866	0.000	30.191		1	6 AFF	3 60	0
3 2	27.39	7 13.	130 2	7.572	0.0	00 22	.778	0.000	0.000			1	7 AFF	3 60	0
4 5 3	0.000	0 28. 7 12.	902 (155 2)	2.778	15.2	5 15 36 13	.236	14.882	30.124				O NEE	3.60	0
6	0.000	0 28.	866	0.000	0.0	00 14	.882	211002					ALF	3.60	0
7 1	4.98	4 0.	000	0.000	30.5)3							ALF	3.60	4
8 1	1.662	2 30.	191										1 AFF	3.60	т 0
												2	ALL ALL	3.60	10
												2	2 ALF	3.60	12

UAM7 - Paris (France), April 10-12, 2013

20

Effect of H in H₂O for a full core PWR (courtesy of O. Cabellos, UPM, Spain)

Uppsala 2013

In TMC:

If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.

In TMC:

If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.

Well, then uncertainty propagation with TMC takes 1000×1000 longer than a single calculation...

(*Each* $\sigma_{\text{statistics}}$ *needs to be small*)

In TMC:

If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.

Well, then uncertainty propagation with TMC takes 1000×1000 longer than a single calculation...

(Each $\sigma_{\text{statistics}}$ needs to be small)

There is a solution with Monte Carlo codes.

If a single calculation takes *m* histories (σ_{stat} small enough), then repeat it *n* times with *m/n* histories, random nuclear data and random seeds.

 $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds.

2013: fast TMC method... If a single calculation takes *m* histories (σ_{stat} small enough), then repeat it *n* times with *m/n* histories, random nuclear data and random seeds. $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds. run 0 ENDF/B-VII.1 seed s₀ *m* histories T sec. $k \pm \sigma_{\text{stat}}$

2013: fast TMC method... If a single calculation takes *m* histories (σ_{stat} small enough), then repeat it *n* times with *m/n* histories, random nuclear data and random seeds. $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds. <u>run 0 ENDF/B-VII.1 seed s₀ *m* histories T sec. $k \pm \sigma_{\text{stat}}$ run 1 nuclear data 1 seed s₁ *m/n* hist. T/n sec. $k_1 \pm \sigma_1 \sim \sigma_{\text{stat}} \sqrt{n}$ </u>

2013: fa	st TMC metho	d			
If a	single calcula then reprint the reprint the reprint the reprint the reprint the reprint the reprint term is the reprint term	ation tal peat it <i>n</i> n nuclea $\sigma_{\text{statistic}}^2$	times <i>m</i> history times with the data and $r + \sigma_{nuclean}^2$	ories (σ _{st} n <i>m/n</i> hi random r data <mark>still</mark>	at small enough), stories, seeds. holds.
run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k \pm \sigma_{stat}$
run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{stat} \sqrt{n}$
run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2 \pm \sigma_2$

If a single calculation takes <i>m</i> histories (σ_{stat} small enough), then repeat it <i>n</i> times with <i>m/n</i> histories, random nuclear data and random seeds. $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds.							
run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k \pm \sigma_{stat}$		
run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{\text{stat}} \sqrt{n}$		
run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2 \pm \sigma_2$		
•		• •			•		
run n	nuclear data <i>n</i>	seed s_n	m/n hist.	T/n sec.	$k_n \pm \sigma_n$		

If a single calculation takes <i>m</i> histories (σ_{stat} small enough), then repeat it <i>n</i> times with <i>m/n</i> histories, random nuclear data and random seeds. $\sigma_{\text{total}}^2 = \sigma_{\text{statistics}}^2 + \sigma_{\text{nuclear data}}^2$ still holds.							
run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k \pm \sigma_{stat}$		
run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{\text{stat}} \sqrt{n}$		
run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2 \pm \sigma_2$		
•		• •			• • •		
run <i>n</i>	nuclear data <i>n</i>	seed s_n	m/n hist.	T/n sec.	$\mathbf{k}_n \pm \mathbf{\sigma}_n$		
n runs				T sec.			

If a	single calculation then reprint the reprint $\sigma_{\text{total}}^2 =$	ation tal peat it <i>n</i> n nuclea $\sigma_{\text{statistic}}^2$	kes <i>m</i> histo times with ar data and $c_s + \sigma_{nuclear}^2$	pries (σ_{sta} h m/n his random r data still	t small enough), stories, seeds. holds.
run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k \pm \sigma_{stat}$
run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{stat} \sqrt{n}$
run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2 \pm \sigma_2$
• •		• •			• •
run n	nuclear data <i>n</i>	seed s_n	m/n hist.	T/n sec.	$\mathbf{k}_n \pm \mathbf{\sigma}_n$
n runs		$\left\{ \begin{array}{c} \sigma_{total}^2 \\ \end{array} \right.$	$=\frac{1}{n-1}\sum_{i=1}^{n}$	T sec. $\sum_{i=1}^{n} (k_i - \overline{k})^2 \checkmark$	
					D. Rochman $-22/26$

If a	single calculation then reprint the reprint $\sigma_{\text{total}}^2 =$	ation tal peat it <i>n</i> n nuclea $\sigma_{\text{statistic}}^2$	$\frac{1}{2} \exp \frac{m}{m} \operatorname{histor}_{nuclear}$	ories ($\sigma_{standon}$ n <i>m/n</i> hi random r data <mark>still</mark>	at small enough), stories, seeds. holds.
run 0	ENDF/B-VII.1	seed s ₀	<i>m</i> histories	T sec.	$k \pm \sigma_{stat}$
run 1	nuclear data 1	seed s ₁	m/n hist.	T/n sec.	$k_1 \pm \sigma_1 \sim \sigma_{\text{stat}} \sqrt{n}$
run 2	nuclear data 2	seed s ₂	m/n hist.	T/n sec.	$k_2 \pm \sigma_2$
•		•			•
run n	nuclear data <i>n</i>	seed s_n	m/n hist.	T/n sec.	$\mathbf{k}_n \pm \mathbf{\sigma}_n$
n runs		$\begin{cases} \sigma_{total}^{2} \\ \sigma_{statistic}^{2} \end{cases}$	$= \frac{1}{n-1} \sum_{i=1}^{n} \sum_{i=1}^{n} \mathbf{o}_{i}$	T sec. $\int_{1}^{2} (k_i - \overline{k})^2 \ll$ $\int_{1}^{2} (k_i - \overline{k})^2 \ll$	
-					D. Rochman – 22 / 26

The fast TMC method

- \odot as fast as S/U methods (1-2 × longer than 1 single calculation *without* uncertainties),
- \odot tested on criticality & shielding benchmarks, burn-up (k_{eff} and inventory),

The fast TMC method

- \odot as fast as S/U methods (1-2 × longer than 1 single calculation *without* uncertainties),
- \odot tested on criticality & shielding benchmarks, burn-up (k_{eff} and inventory),
- © Example: the Martin-Hoogenboom benchmark (= the Kord Smith Challenge)

MCNP model: 241 fuel assemblies, with 264 fuel pins each

 \implies 357 × 357 × 100 regions (1.26 × 1.26 × 3.66 cm³): 12.7 million cells

The fast TMC method

- \odot as fast as S/U methods (1-2 × longer than 1 single calculation *without* uncertainties),
- \odot tested on criticality & shielding benchmarks, burn-up (k_{eff} and inventory),
- © Example: the Martin-Hoogenboom benchmark (= the Kord Smith Challenge)

MCNP model: 241 fuel assemblies, with 264 fuel pins each

 $\implies 357 \times 357 \times 100 \text{ regions } (1.26 \times 1.26 \times 3.66 \text{ cm}^3): 12.7 \text{ million cells}$ Uncertainty on generated local pin power (tally f7) due to ²³⁵U, ²³⁸U, ²³⁹Pu and H in H₂O thermal scattering in each cell ?

Fast TMC method

1 normal calculation without nuclear data uncertainty takes $n = 2 \times 10^{11}$ histories ($\sigma_{\text{statistics}} = 0.25$ % at the center, 500 weeks on 1 cpu)

 \implies TMC: 500 random runs of $n = 2 \times 10^{11}$ histories (500 weeks for each)

 \implies fast TMC: 500 random runs of $n/500 = 4 \times 10^8$ histories (1 week for each)

Fast TMC method

1 normal calculation without nuclear data uncertainty takes $n = 2 \times 10^{11}$ histories $(\sigma_{\text{statistics}} = 0.25 \% \text{ at the center, 500 weeks on 1 cpu})$ \implies TMC: 500 random runs of $n = 2 \times 10^{11}$ histories (500 weeks for each) \implies fast TMC: 500 random runs of $n/500 = 4 \times 10^8$ histories (1 week for each)

Other outcomes of the NRG approach (not detailed here)

- ✗ Sensitivity,
- ✤ Nuclear data adjustment,
- * Include fast TMC in Serpent ? $_{0.0}$

D. Rochman – 25 / 26

Conclusions

- (fast) TMC is a powerful tool for uncertainty propagation,
- All types of nuclear data impact can be assessed,
- ➡ Most direct way to propagate uncertainties,
- Better QA, better modern use of computers,
- (fast) TMC is part of global approach to improve transparency and safety of nuclear simulation

Conclusions

- (fast) TMC is a powerful tool for uncertainty propagation,
- All types of nuclear data impact can be assessed,
- ➡ Most direct way to propagate uncertainties,
- Better QA, better modern use of computers,
- (fast) TMC is part of global approach to improve transparency and safety of nuclear simulation

TMC: If we can do a calculation once, we can also do it a 1000 times, each time with a varying data library.

Conclusions

- (fast) TMC is a powerful tool for uncertainty propagation,
- All types of nuclear data impact can be assessed,
- ➡ Most direct way to propagate uncertainties,
- Better QA, better modern use of computers,
- (fast) TMC is part of global approach to improve transparency and safety of nuclear simulation

TMC: If we can do a calculation once, we can also do

fast TMC:

If we can do a calculation once, we can also get nuclear data uncertainties at the same time