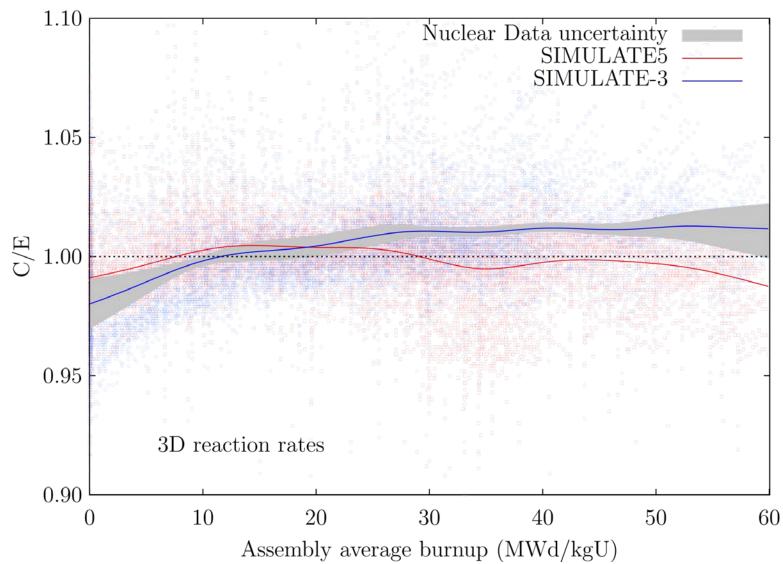


D. Rochman

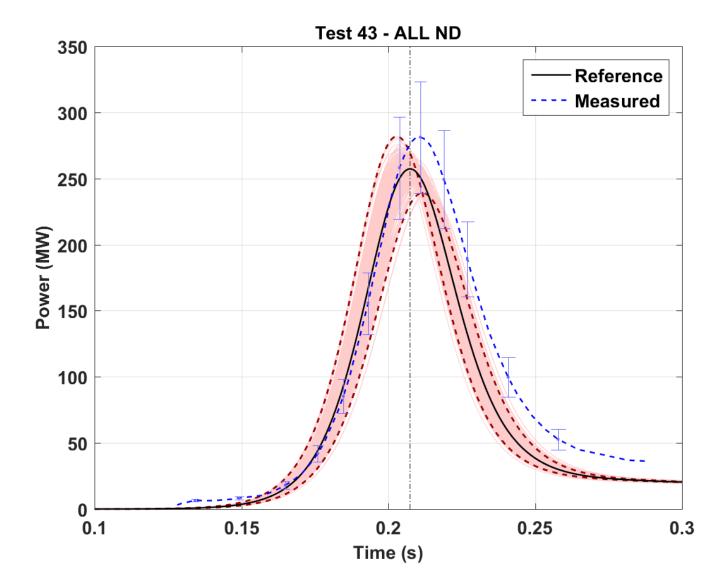
ICSBEP benchmarking...reaction rates

• Some observations and needs from reactor and spent fuel simulations

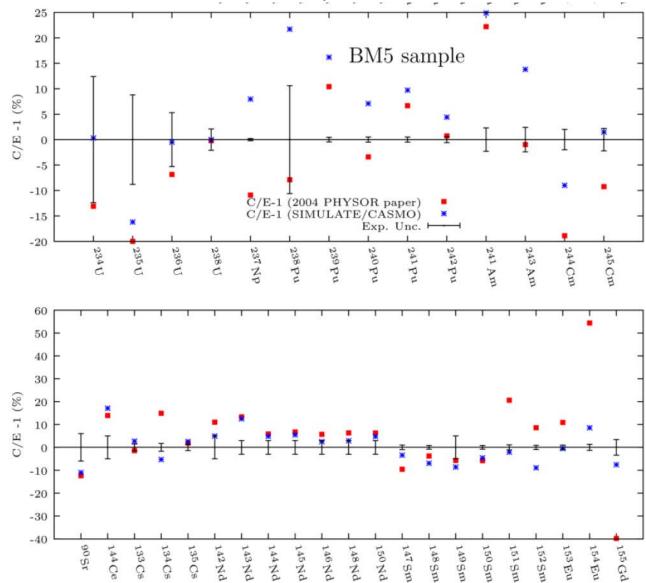

• ICSBEP & reaction rates

• Conclusion

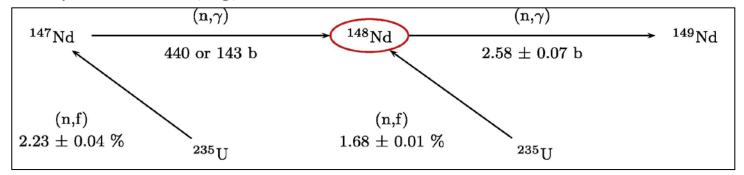
What are the needs from the LWR normal operation for nuclear data?

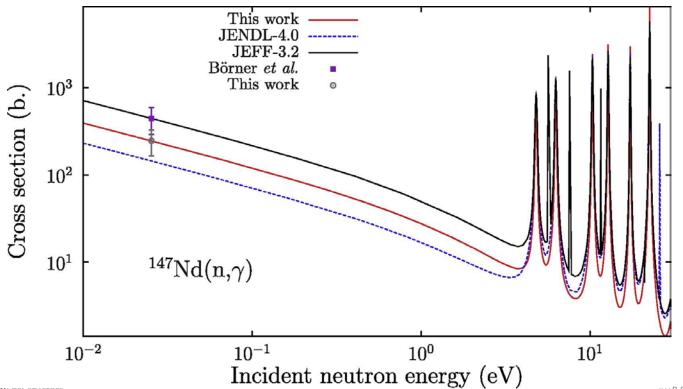


ttp://www.psi.ch/stars — 2018.08.06/STARS/RD41 - (3 / 14


- What are the needs from the LWR transient for nuclear data?
- Example of RIA experiment:

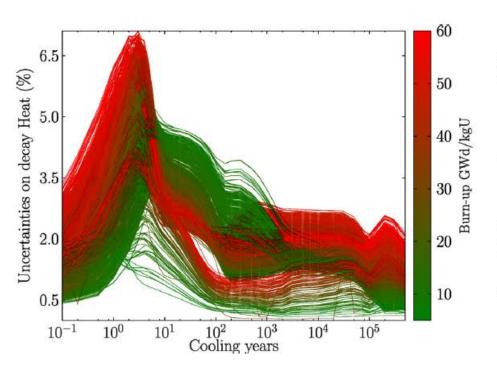
What are the needs from the LWR spent fuel for nuclear data?

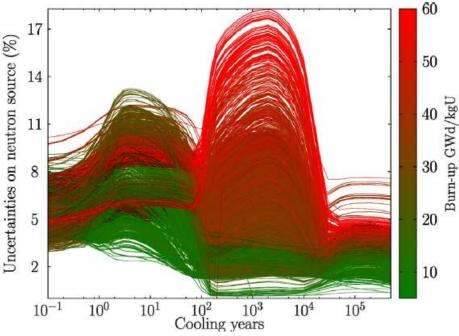




http://www.psi.ch/stars — 2018.08.06/STARS/RD41 - (5 / 14)

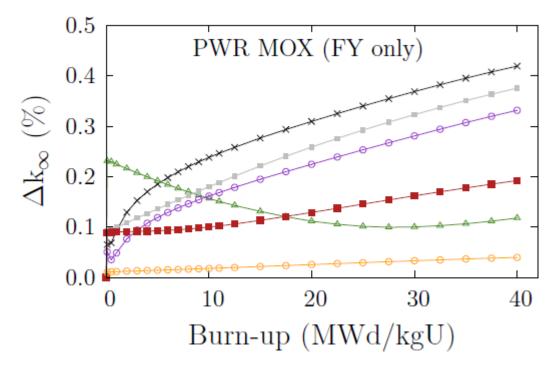
- What are the needs from the LWR spent fuel for nuclear data?
- Example for Nd147(n,g)





http://www.psi.cn/stars

- What are the needs from the LWR spent fuel for nuclear data?
- Example for uncertainties for spent nuclear fuel for realistic irradiation history



http://www.psi.ch/stars 2018.08.06/STARS/RD41 - (7 / 14)

- What are the needs from the LWR spent fuel for nuclear data?
- Example for the impact of the methods

GEF	×
ENDF/B-VII.1 normalization 1	
${\rm ENDF/B\text{-}VII.1+normalization~2}$	
${\rm ENDF/B\text{-}VII.1+normalization}~3$	
${\rm ENDF/B\text{-}VII.1+normalization}~4$	
ENDF/B-VII.1 + normalization 5	

http://www.psi.ch/stars — 2018.08.06/STARS/RD41 - (8 / 14

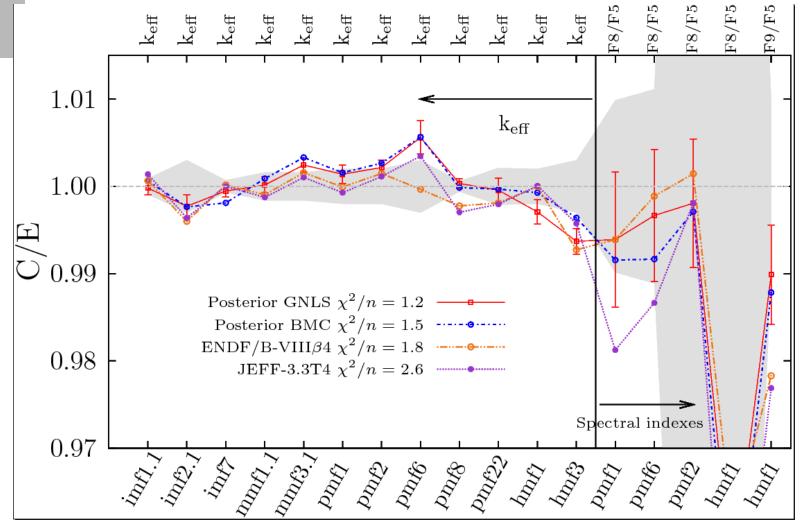
- What are the needs from the LWR spent fuel for nuclear data?
- Example for the impact of the methods/sources of covariances

Table 3. Comparisons with the uncertainties presented in reference [26] for a PWR case, 4.1 wt.% enrichment, UO fuel, exposure of 40 MWd/tHM without cooling (case 1), and with reference [11] for a PWR case, 3.4% enrichment, UO fuel, exposure of 54 MWd/kgU, with 10 years cooling (case 2).

Isotope	Uncertainty (%)			Isotope	Uncertainty (%)					
	Case 1		Case 2			Case 1		Case 2		
	[26]	This work	[11]	This work		[26]	This work	[11]	Th	is work
²³⁴ U	_	1.8	2.4	2.1	$^{90}\mathrm{Sr}$	5	0.7		1.5	0.7
^{235}U	1.0	1.4	3.3	2.7	$^{99}\mathrm{Tc}$		0.5 1.3		10	1.5
^{236}U	1.5	1.6	1.5	1.6	$^{129}{ m I}$	13			_	2.9
239 Pu	2.0	2.3	2.9	2.6	$^{137}\mathrm{Cs}$.7 7		4.0	6.2
240 Pu	1.9	2.3	2.5	2.2	$^{148}\mathrm{Nd}$		14 0.4		0.4	
$^{241}\mathrm{Pu}$	2.7	1.7	2.7	2.1	114	1-1	0.4		0.4	0.4
$^{242}\mathrm{Cm}$	2.2	2.7	_	3.6						
$^{244}\mathrm{Cm}$	8.5	9.7	9.6	9.1						

Intermediate conclusions:

- Reaction rates are of prime importance for reactor applications
- Nuclear data are important for transient and spent nuclear fuel assessments (SNF)
- Different methods lead to differences as large or larger than the nuclear data impact for SNF (see for instance the "blind benchmark" from SKB)


Our experience:

- The European industry is interested in better characterization of the SNF, and a quantification of the impact of key parameters (including nuclear data)
- The current knowledge of nuclear data, **combined** with a variety of calculation methods, need to be improved for better understanding and cost reduction

ICSBEP, k_{eff} and reaction rates

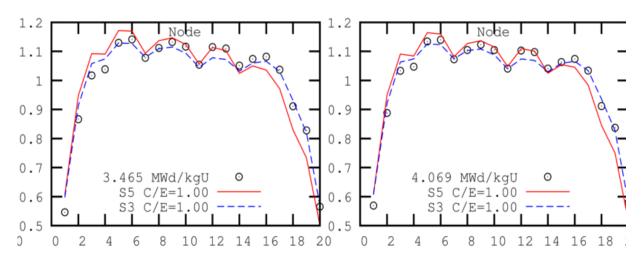
- The ICSBEP or IRPhe databases are mostly used for k_{eff} calculations,
- Nuclear data are (too) often validated primarily on k_{eff}

http://www.psi.ch/stars 2018.08.06/STARS/RD41 - (11 / 14)

Reaction rates (fission and activation ratios)

- Not many benchmarks include reaction rates
- Large experience in NEA subgroups for data adjustments (SG-26,33,39,46):

– pmf1	(Jezebel)	F28/F25, F49/F25, F37/F25
– pmf2	(Jezebel-240)	F28/F25, F37/F25
– pmf6	(Flattop Pu)	F28/F25, F37/F25
– pmf8		
– hmf1	(Godiva)	F28/F25, F49/F25, F37/F25
– hmf28	(Flattop)	F28/F25, F49/F25, F37/F25
– imf7	(Bigten)	F28/F25, F49/F25, F37/F25, C28/F25
– zpr6-7		F28/F25, F49/F25, C28/F25
– zppr9		F28/F25, F49/F25, C28/F25
– sneak 7A		F28/F25, F49/F25, C28/F25
– sneak 7B		F28/F25, F49/F25, C28/F25


Additionally, many activation measurements are also provided

Reaction rates (fission and activation ratios)

- Uncertainties for the reaction rates are often larger than for $k_{\text{eff,}}$ therefore an adjustment procedure will be driven mainly by k_{eff}
- Some questions arise due to poor descriptions (type of fission chambers, fissile contents and impurities, possible calibration)
- For reactor applications, fission chamber and aerobal measurements (51V(n,g)+beta decay) are of prime importance (local and possible tilts)
- Many corrections are necessary (deadtime, geometry, photons...)
- "How far" better nuclear data are needed?

http://www.psi.ch/stars — 2018.08.06/STARS/RD41 - (13 / 14

Conclusions

- From the nuclear data point of view, k_{eff} validation is not enough,
- \bullet From the application side, many important cross sections and uncertainties do not depend on $k_{\text{eff}}\text{,}$
- There is a need for a common compiled database for integral quantities other than keff
 - thermal cross sections,
 - resonance integral,
 - reaction rates (fission and activation),
 - MACS...
 - Spectra averaged cross sections,
 - Integral measurements from shutdown (to be) NPP ?
- Such database needs to include covariance information (not only recommended, but also all experimental details),
- There is also a need to quantify the impact of other parameters and of the methods of validation.

p://www.psi.ch/stars — 2018.08.06/STARS/RD41 - (14 / 14

Wir schaffen Wissen – heute für morgen

