MAT 4125

(n,remainder)

Cross Section

-2.519 To 1.420 %

Max Ratio

Min Ratio

2.0

1.5

1.0

0.5

0.0

0.98

1.00

1.02

Nt093-n.tendl Threshold 30.000 MeV

Nt093.endfb7.1 Threshold 20.000 MeV

Cross Section (barns)

Ratio

Incident Energy (eV)
Cross Section

-100.0 To 9999.0 %

Max Ratio
Min Ratio

Nb093-n.tendl Threshold 1.9497 MeV
Nb093.endfb7.1 Threshold 1.9600 MeV

Ratio

Incident Energy (eV)
(n,n') p
Cross Section
-100.0 To 9999. %

Max Ratio

Min Ratio

Nb093-n.tendl Threshold 6.1079 MeV
Nb093.endfb7.1 Threshold 6.1079 MeV

Cross Section (milli-barns)

Ratio

Incident Energy (eV)
The graph represents the cross section for the 1.395 MeV (n,n') level in 41-Nb-93. It shows the cross section in milli-barns as a function of incident energy in eV. The graph compares three different datasets:

- **Nb093-n.tendl Threshold 1.4106 MeV**
- **Nb093.endfb7.1 Threshold 1.6174 MeV**
- **Nb093.endfb7.1/Nb093-n.tendl**

The y-axis is labeled as Cross Section (milli-barns) and ranges from 0 to 120. The x-axis is labeled as Incident Energy (eV) and ranges from 10^2 to 10^8. The max and min ratios are indicated on the graph.
(n,n\textquoteleft) Continuum Cross Section

-100.0 To 32.64 %

Max Ratio

Min Ratio

Nb093-n.tendl Threshold 1.7124 MeV

--Nb093.endfb7.1 Threshold 2.2006 MeV

Cross Section (barns)

Ratio

Incident Energy (eV)
(n,d) Cross Section

Max Ratio

Min Ratio

\textbf{Nb093-n.tendl Threshold 3.8592 MeV}

\textbf{Nb093.endfb7.1 Threshold 3.8592 MeV}

\textbf{Nb093.endfb7.1/Nb093-n.tendl}

Cross Section (milli-barns)

Ratio

Incident Energy (eV)
Total Kinematic Kerma (High Limit)

Cross Section

Energy Range: 100.0 To 22.44%

<table>
<thead>
<tr>
<th>Energy (eV)</th>
<th>Nb093-n.tendl</th>
<th>Nb093.endfb7.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-5}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-4}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-2}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{0}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{2}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{4}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{5}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{6}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{7}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{8}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ratio

<table>
<thead>
<tr>
<th>Energy (eV)</th>
<th>Nb093.endfb7.1/Nb093-n.tendl</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-5}</td>
<td></td>
</tr>
<tr>
<td>10^{-4}</td>
<td></td>
</tr>
<tr>
<td>10^{-3}</td>
<td></td>
</tr>
<tr>
<td>10^{-2}</td>
<td></td>
</tr>
<tr>
<td>10^{-1}</td>
<td></td>
</tr>
<tr>
<td>10^{0}</td>
<td></td>
</tr>
<tr>
<td>10^{1}</td>
<td></td>
</tr>
<tr>
<td>10^{2}</td>
<td></td>
</tr>
<tr>
<td>10^{3}</td>
<td></td>
</tr>
<tr>
<td>10^{4}</td>
<td></td>
</tr>
<tr>
<td>10^{5}</td>
<td></td>
</tr>
<tr>
<td>10^{6}</td>
<td></td>
</tr>
<tr>
<td>10^{7}</td>
<td></td>
</tr>
<tr>
<td>10^{8}</td>
<td></td>
</tr>
</tbody>
</table>