Correlation Matrix

Ordinate scales are % relative standard deviation and barns. Abscissa scales are energy (eV).
Ordinate scale is % relative standard deviation. Abscissa scales are energy (eV).

Correlation Matrix

Abscissa scales are energy (eV).

Ordinate scale is % relative standard deviation.
Ordinate scale is % relative standard deviation. Abscissa scales are energy (eV).

$\Delta \sigma/\sigma$ vs. E for 18O(n,tot.)

$\Delta \sigma/\sigma$ vs. E for 18O(n,nonel.)

Correlation Matrix

Abscissa scales are energy (eV).
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

Correlation Matrix

$\Delta \sigma/\sigma$ vs. E for 18O(n,tot.)

$\Delta \sigma/\sigma$ vs. E for 18O(n,inel.)
The ordinate scale is % relative standard deviation.

Abscissa scales are energy (eV).

Correlation Matrix

Below are the graphs for $\Delta \sigma / \sigma$ vs. E for $^{18}\text{O}(n,\text{tot.})$ and $^{18}\text{O}(n,2n)$.
Correlation Matrix

Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

$\Delta \sigma/\sigma$ vs. E for $^{18}\text{O}(n,\text{tot.})$
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

Abscissa scales are energy (eV).
Ordinate scale is % relative standard deviation.

Abscissa scales are energy (eV).

Warning: some uncertainty data were suppressed.

Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>0.0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
$\Delta \sigma / \sigma$ vs. E for $^{18}\text{O}(n,\text{tot.})$

- Ordinate scale is % relative standard deviation.
- Abscissa scales are energy (eV).

$\Delta \sigma / \sigma$ vs. E for $^{18}\text{O}(n,p)$

Correlation Matrix

- Abscissa: E in 10^7 eV
- Ordinate: $\Delta \sigma / \sigma$ in % relative standard deviation

Correlation Matrix:
- Colors represent correlation coefficients:
 - Red: -1.0 to 0.0
 - Green: 0.0 to 1.0

Legend:
- 0.0
- 0.2
- 0.4
- 0.6
- 0.8
- 1.0

Color bar:
- 0.0
- 0.2
- 0.4
- 0.6
- 0.8
- 1.0
- -1.0
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

\[\begin{array}{cccc}
0.0 & 0.2 & 0.4 & 0.6 \\
0.2 & 0.4 & 0.6 & 0.8 \\
0.4 & 0.6 & 0.8 & 1.0 \\
0.6 & 0.8 & 1.0 & 0.0 \\
\end{array} \]
Ordinate scales are % relative standard deviation and barns. Abscissa scales are energy (eV).

Correlation Matrix

σ vs. E for $^{18}\text{O}(n,\text{el.})$

$\Delta\sigma/\sigma$ vs. E for $^{18}\text{O}(n,\text{el.})$
Ordinate scale is % relative standard deviation. Abscissa scales are energy (eV).

$\Delta \sigma / \sigma$ vs. E for $^{18}O(n,el.)$ and $^{18}O(n,\text{nonel.})$.
The ordinate scale is % relative standard deviation. Abscissa scales are energy (eV).

The graph shows the correlation matrix for $\Delta\sigma/\sigma$ vs. E for 18O(n,el.) and 18O(n,inel.).
Ordinate scale is % relative standard deviation. Abscissa scales are energy (eV).

Correlation Matrix

Abscissa vs. E for $^{18}\text{O}(n,\text{el.})$
\[\frac{\Delta \sigma}{\sigma} \text{ vs. } E \text{ for } ^{18}\text{O}(n,\text{el.}) \]

Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

Correlation Matrix

-0.2 -0.4 -0.6 -0.8 -1.0
 0.0 0.2 0.4 0.6 0.8 1.0
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

\[\begin{array}{ccccccc}
0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\
0.2 & 0.0 & -0.2 & -0.6 & -0.8 & -1.0 \\
0.4 & -0.2 & 0.0 & -0.4 & -0.6 & -0.8 \\
0.6 & -0.6 & -0.4 & 0.0 & -0.2 & 0.0 \\
0.8 & -0.8 & -0.6 & -0.2 & 0.0 & 0.2 \\
1.0 & -1.0 & -0.8 & 0.2 & 0.0 & 0.0 \\
\end{array} \]
$\Delta \sigma/\sigma$ vs. E for 18O(n,el.)

Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

1.0 0.8 0.6 0.4 0.2 0.0
-1.0 -0.8 -0.6 -0.4 -0.2 0.0
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

Δσ/σ vs. E for 18O(n,el.)

Abscissa scales are energy (eV).
Correlation Matrix

Abscissa scales are energy (eV).
Correlation Matrix
Ordonate scale is % relative standard deviation. Abcissa scales are energy (eV). Warning: some uncertainty data were suppressed.

\[\Delta \sigma/\sigma \text{ vs. } E \text{ for } ^{18}\text{O(n,el.)} \]

Correlation Matrix

Abscissa scales are energy (eV).
Correlation Matrix

Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).
\[\frac{\Delta \sigma}{\sigma} \text{ vs. } E \text{ for } ^{18}\text{O}(n,\text{nonel.}) \]

Ordinate scale is % relative standard deviation. Abscissa scales are energy (eV).

Correlation Matrix

Abscissa: E (eV)
$\Delta \sigma/\sigma$ vs. E for 18O(n,nonel.)

Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

Correlation Matrix

0.0 0.2 0.4 0.6 0.8 1.0
-1.0 -0.8 -0.6 -0.4 -0.2 0.0
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

Correlation Matrix

Delta sigma/sigma vs. E for 18O(n,nonel.)
Ordinate scale is % relative standard deviation. Abscissa scales are energy (eV). Warning: some uncertainty data were suppressed.

Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>-1.0</th>
<th>-0.8</th>
<th>-0.6</th>
<th>-0.4</th>
<th>-0.2</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0.0</td>
</tr>
</tbody>
</table>

$\Delta\sigma/\sigma$ vs. E for $^{18}\text{O(n,nonel.)}$

$\Delta\sigma/\sigma$ vs. E for $^{18}\text{O(n,cont.)}$
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

\[\Delta \sigma/\sigma \text{ vs. } E \text{ for } ^{18}\text{O}(n,\text{nonel.}) \]
$\Delta \sigma/\sigma$ vs. E for $^{18}\text{O}(n,\text{nonel.})$

Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

Correlation Matrix

0.0 0.2 0.4 0.6 0.8 1.0
0.0 -0.2 -0.4 -0.6 -0.8 -1.0

50 40 30 20 10 0 10^7
50 40 30 20 10 0 10^7
Ordinate scale is % relative standard deviation. Abscissa scales are energy (eV).

Warning: some uncertainty data were suppressed.

Ordinate scale is % relative standard deviation. Abscissa scales are energy (eV).

Warning: some uncertainty data were suppressed.
σ vs. E for 18O(n,inel.)

Abscissa scales are energy (eV).

Ordinate scales are % relative standard deviation and barns.

Correlation Matrix

0.0
0.2
0.4
0.6
0.8
1.0

-0.2
-0.4
-0.6
-0.8
-1.0

0.0
0.2
0.4
0.6
0.8
1.0

$\Delta\sigma/\sigma$ vs. E for 18O(n,inel.)

Abscissa scales are energy (eV).

Ordinate scales are % relative standard deviation and barns.
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

Correlation Matrix

Δσ/σ vs. E for $^{18}\text{O}(n,\text{inel.})$

Δσ/σ vs. E for $^{18}\text{O}(n,2n)$

Abscissa scales are energy (eV).
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

Correlation Matrix

1.0 0.8 0.6 0.4 0.2 0.0
-1.0 -0.8 -0.6 -0.4 -0.2 0.0

Δσ/σ vs. E for 18O(n,inel.)

Abscissa scales are energy (eV).

Ordinate scale is % relative standard deviation.
Ordinate scale is relative standard deviation.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

Warning: some uncertainty data were suppressed.
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>1.0</th>
<th>0.8</th>
<th>0.6</th>
<th>0.4</th>
<th>0.2</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

Correlation Matrix

<table>
<thead>
<tr>
<th>0.0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-0.2</td>
<td>-0.4</td>
<td>-0.6</td>
<td>-0.8</td>
<td>-1.0</td>
</tr>
</tbody>
</table>

$\Delta \sigma/\sigma$ vs. E for 18O(n,inel.)

$\Delta \sigma/\sigma$ vs. E for 18O(n,p)
Correlation Matrix

Abscissa scales are energy (eV).

Ordinate scale is % relative standard deviation.

Warning: some uncertainty data were suppressed.
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

σ vs. E for 18O(n,2n)

$\Delta\sigma/\sigma$ vs. E for 18O(n,2n)
Ordinate scale is % relative standard deviation. Abscissa scales are energy (eV).

Correlation Matrix:

Δσ/σ vs. E for $^{18}\text{O}(n,2n)$
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

Warning: some uncertainty data were suppressed.
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

Correlation Matrix

Δσ/σ vs. E for 18O(n,2n)

Δσ/σ vs. E for 18O(n,p)
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).
σ vs. E for 18O(n,3n)

Abscissa scales are energy (eV).

Ordinate scales are % relative standard deviation and barns.

Warning: some uncertainty data were suppressed.

Correlation Matrix

Delta σ/σ vs. E for 18O(n,3n)
Ordinate scales are % relative standard deviation and barns.

Abscissa scales are energy (eV).

Correlation Matrix

-1.0 1.0
-0.8 0.8
-0.6 0.6
-0.4 0.4
-0.2 0.2
 0.0 0.0
Ordinate scales are % relative standard deviation and barns. Abscissa scales are energy (eV). Warning: some uncertainty data were suppressed.
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>1.0</th>
<th>0.8</th>
<th>0.6</th>
<th>0.4</th>
<th>0.2</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Δσ/σ vs. E for 18O(n,np)

σ vs. E for 18O(n,np)
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

\[\begin{array}{cccc}
0.0 & 0.2 & 0.4 & 0.6 \\
-0.2 & 0.0 & 0.2 & 0.4 \\
-0.4 & -0.2 & 0.0 & 0.2 \\
-0.6 & -0.4 & -0.2 & 0.0 \\
\end{array} \]
Ordinate scales are % relative standard deviation and barns. Abscissa scales are energy (eV).

Correlation Matrix

\[
\begin{array}{cccccccc}
0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\
0.0 & -0.2 & -0.4 & -0.6 & -0.8 & -1.0 \\
0.2 & 0.4 & 0.6 & 0.8 & 1.0 & \\
0.4 & 0.6 & 0.8 & 1.0 & & \\
0.6 & 0.8 & 1.0 & & & \\
0.8 & 1.0 & & & & \\
1.0 & & & & & & \\
\end{array}
\]
Ordinate scale is % relative standard deviation. Abscissa scales are energy (eV). Warning: some uncertainty data were suppressed.

Correlation Matrix

Warning: some uncertainty data were suppressed.
Ordinate scale is % relative standard deviation. Abscissa scales are energy (eV). Warning: some uncertainty data were suppressed.

Correlation Matrix

Abscissa scales are energy (eV).
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

\[\Delta \sigma/\sigma \text{ vs. } E \text{ for } ^{18}\text{O}(n,n_1) \]

\[\Delta \sigma/\sigma \text{ vs. } E \text{ for } ^{18}\text{O}(n,p) \]

Correlation Matrix

-0.2 -0.4 -0.6 -0.8 -1.0
0.0

0.2 0.4 0.6 0.8 1.0
$\Delta \sigma/\sigma$ vs. E for $^{18}\text{O}(n,n_1)$

Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

$\begin{matrix}
0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\
0.0 & -0.2 & -0.4 & -0.6 & -0.8 & -1.0 \\
0.0 & -0.2 & -0.4 & -0.6 & -0.8 & -1.0 \\
0.0 & -0.2 & -0.4 & -0.6 & -0.8 & -1.0 \\
0.0 & -0.2 & -0.4 & -0.6 & -0.8 & -1.0 \\
0.0 & -0.2 & -0.4 & -0.6 & -0.8 & -1.0
\end{matrix}$
Correlation Matrix

Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

σ vs. E for 18O(n,n$_2$)

Abscissa scales are energy (eV).
Ordinate scales are % relative standard deviation and barns. Abscissa scales are energy (eV).

Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>-1.0</th>
<th>-0.8</th>
<th>-0.6</th>
<th>-0.4</th>
<th>-0.2</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>-1.0</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-0.2</td>
</tr>
</tbody>
</table>
Ordinate scales are % relative standard deviation and barns. Abscissa scales are energy (eV).

Warning: some uncertainty data were suppressed.

Correlation Matrix
Ordinate scale is % relative standard deviation.
Abcissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

\[\begin{matrix} 0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\ 0.0 & -0.2 & -0.4 & -0.6 & -0.8 & -1.0 \\end{matrix} \]
Ordinate scale is % relative standard deviation. Abscissa scales are energy (eV). Warning: some uncertainty data were suppressed.

Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>-1.0</th>
<th>-0.8</th>
<th>-0.6</th>
<th>-0.4</th>
<th>-0.2</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>-0.8</td>
<td>0.8</td>
<td>1.0</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>-0.6</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
<td>0.6</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>-0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>1.0</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>-0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Δσ/σ vs. E for \(^{18}\text{O}(n,n\text{cont.})\)

Δσ/σ vs. E for \(^{18}\text{O}(n,p)\)
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

Abscissa scales are energy (eV).
Ordinate scale is % relative standard deviation.
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix
Δσ/σ vs. E for 18O(n,γ)

Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>0.0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-1.0</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>0.2</td>
<td>-1.0</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>0.4</td>
<td>-1.0</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>0.6</td>
<td>-1.0</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>0.8</td>
<td>-1.0</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
<td>-1.0</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Abscissa scales are energy (eV).
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

$\Delta \sigma/\sigma$ vs. E for $^{18}\text{O}(n,\gamma)$

Abscissa scales are energy (eV).

Ordinate scale is % relative standard deviation.

Warning: some uncertainty data were suppressed.
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

$\Delta \sigma/\sigma$ vs. E for 18O(n,p)

Abscissa scales are energy (eV).
Δσ/σ vs. E for 18O(n,p)

Abscissa scales are energy (eV).

Ordinate scale is % relative standard deviation.

Correlation Matrix

-1.0 0.0 0.8 0.8
-0.8 0.6 0.6 0.6
-0.6 0.4 0.4 0.4
-0.4 0.2 0.2 0.2
 0.0 0.0 0.0 0.0

$\Delta\sigma/\sigma$ vs. E for 18O(n,\(\alpha\))
Correlation Matrix

Vertically stacking the graphs is confusing. Perhaps spread them out horizontally?
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

σ vs. E for 18O(n,t)

Abscissa scales are energy (eV).
Ordinate scales are % relative standard deviation and barns.
Warning: some uncertainty data were suppressed.
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

σ vs. E for 18O(n,α)

$\Delta\sigma/\sigma$ vs. E for 18O(n,α)