D. Rochman and E. Bauge # Fission yields and cross sections: correlated or not? - Motivation/examples - Considered system and results - Conclusion ### BFMC + integral data - Motivation 1: integral data are already used during adjustment - Motivation 2: This should be done at the evaluation level - Motivation 3: It leads to uncertainty reduction and cross-isotope correlations - Motivation 4: nothing new: already done with GLLS by SG... at the OECD #### • BFMC: - Generate n=5000 random FY and XS libraries based on ENDF/B-VIII.0 covariance - Calculate n times the benchmark - Assign weights to all realizations i with a chi2 and update the parameter distributions For a random file i and a set of p benchmarks: $$\chi_i = \sum_{j}^{p} \left(\frac{\mathbf{k}_{\text{eff,i}}^{(j)} - \mathbf{k}_{\text{exp}}^{(j)}}{\Delta \mathbf{k}^{(j)}} \right)^2 \tag{1}$$ $$w_i = \exp(-\frac{\chi_i}{2}) \tag{2}$$ - Update the cross sections with the weights. - <u>System</u>: PIE sample called GU1, simulated with CASMO (18 actinides, 32 fission products measured) #### PIE data: GU1 sample - <u>PIE data</u>: isotopic concentrations from irradiated samples in a specific reactor - Measured actinides and fission products (e.g. in mg/gU) - Used for transport and depletion code validation Production of some measured fission products depends on both FY and XS Fig. 4. Case of correlations between 147 Pm(n, γ) and fission yields from 235 U and 239 Pu. Left: prior correlation matrix without PIE data; Right: posterior correlation matrix using the PIE measurement from 147 Sm. http://www.psi.ch/stars 2019.11.30/STARS/RD41 - (5 / 8) Production of some measured fission products depends on FY from a few actinides **Fig. 3.** Case of correlations between fission yields from ²³⁵U, ²³⁹Pu and ²⁴¹Pu. Left: prior correlation matrix without PIE data; Right: posterior correlation matrix using the PIE measurement from ¹³³Cs. http://www.psi.ch/stars 2019.11.30/STARS/RD41 - (6 / 8) - Last example of correlations between nuclear data, after XS-XS, XS-nu, XS-nu-PFNS, - Such correlations can improve calculations of integral quantities and answer requests from a number of users - Because such correlations are constructed with specific measurements, and are case dependent, it is advocated that such correlations (and adjusted nuclear data) find their place in dedicated adjusted libraries - This possibility can improve the user's satisfaction, but also emphasizes the fact that current nuclear data evaluations do not lead to a unique set of cross sections, nubar or fission yields. #### References on correlations - E. Bauge, P. Dossantos-Uzarralde, "Evaluation of the Covariance Matrix of 239Pu Neutronic Cross Sections in the Continuum Using the Backward-Forward Monte-Carlo Method", J. Kor. Phys. Soc. 59 (2011) 1218. - D. Rochman, E. Bauge, A. Vasiliev and H. Ferroukhi, "Correlation nu-sigma-chi in the fast neutron range via integral information", EPJ/N 3 (2017) 14. - D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi and G. Perret, "Nuclear data correlation between different isotopes via integral information", EPJ/N 4 (2018) 7. - E. Bauge and D. Rochman, "Cross-observables and cross-isotopes correlations in nuclear data from integral constraints", EPJ/ N 4 (2018) 35. - D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi, S. Pelloni, A.J. Koning and J.Ch. Sublet, "Monte Carlo nuclear data adjustment via integral information", EPJ Plus 133 (2018) 537. - D. Rochman, A. Vasiliev, H. Ferroukhi, S. Pelloni, E. Bauge and A.J. Koning, "Correlation nu-sigma for U-Pu in the thermal and resonance neutron range via integral information", EPJ Plus 133 (2019) 453. - J.-Ch. Sublet et al., "Neutron-induced damage simulations: Beyond defect production cross-section, displacement per atom and iron-based metrics", EPJ Plus 134 (2019) 350. - D. Rochman and E. Bauge, "Fission yields and cross sections: correlated or not?", submitted to EPJ/N, July 2020. //www.psi.ch/stars — 2019.11.30/STARS/RD41 - (8 / 8) ## Wir schaffen Wissen – heute für morgen