

RESONANCETABLES-1.0:

Database for thermal cross sections, MACS and average resonance parameters

Arjan Koning, IAEA Dimitri Rochman, PSI

WPEC SG49 Meeting, November 16 2020, NEA, Boulogne-Billancourt (Video meeting)

Rule number 1 for reproducibility, automation and efficiency of nuclear data evaluation

- All historical nuclear data of importance needs to be available all at once, on the spot, NOW, and machine-readable in easy format.
- This holds for all existing ENDF libraries, Atlas of resonances, EXFOR, RIPL, etc, which feed into new libraries
- Two options:
 - (Very) Large complete databases: used for the "3 T's": TALYS, TENDL, TMC
 - command-line API's (not available yet)

Thermal cross sections and resonance integrals: 6 sources of digital information

ANDT 14 Atlas of Neutron and Functional Relationships in Science and Technology Resonances Elementary Particles, Nuclei and Atoms Resonance Parameters and Neutron Sukhoruchkin 2015 Mughabghab Atlas 2018 Thermal Cross Sections Resonance Parameters Z=1-100 Mughabghab Atlas 2006 S.F. Mughabghab Supplement to Volume I/24 Springer

Neutron Activation Analysis: http://www.kayzero.com/k0naa

Available online at www.sciencedirect.com

cienceDirect

Nuclear Data Sheets 110 (2009) 3107-3214

Nuclear Data Sheets

www.elsevier.com/locate/nds

RIPL: Kopecky compilation (Includes Holden tables)

RIPL – Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

 R. Capote,^{1*} M. Herman,^{1,2} P. Obložinský,^{1,2} P.G. Young,³ S. Goriely,⁴ T. Belgya,⁵ A.V. Ignatyuk,⁶
 A.J. Koning,⁷ S. Hilaire,⁸ V.A. Plujko,⁹ M. Avrigeanu,¹⁰ O. Bersillon,⁸ M.B. Chadwick,³ T. Fukahori,¹¹ Zhigang Ge,¹² Yinlu Han,¹² S. Kailas,¹³ J. Kopecky,¹⁴
 V.M. Maslov,¹⁵ G. Reffo,¹⁶ M. Sin,¹⁷ E.Sh. Soukhovitskii,¹⁵ P. Talou³

EXFOR

The "mother" databases

At the moment, the following files in the mother database are processed:

- thermal.mugh06: Mughabghab 2006 Atlas of neutron resonances [2], including many corrections by Dimitri Rochman
 - Thermal (n,el), (n, γ), (n,f), (n, α) cross sections, total, prompt, and delayed nubar
- thermal.mugh18: Mughabghab 2018 Atlas of neutron resonances [1], including many corrections by Dimitri Rochman
 - Thermal (n,tot), (n,el), (n,γ), (n,f), (n,p), (n,α) cross sections, total, prompt, and delayed nubar
 - MACS
 - Thermal (n,γ), (n,f) resonance integrals
 - D_0, S_0, Γ_γ
- sukhoruchkin.txt: Sukhoruchkin 2015 Neutron resonance parameters [3], digitized by Dimitri Rochman
 - Thermal (n,γ), (n,f), (n,p), (n,α) cross sections
 - Thermal (n,γ), (n,f) resonance integrals
 - MACS
- Reference Input Parameter Library (RIPL) [4]
 - thermal.ripl: Thermal cross section database compiled by Jura Kopecky,
 - resonance.ripl: Average resonance parameters D₀, S₀, Γ₂γ, compiled and evaluated by Anatoli Ignatyuk.

The "mother" database

- · Other compilations and evaluations
 - kayzero.txt: Kay-zero database for thermal (n,γ) cross sections, obtained from Andrej Trkov [5]
 - resint.juko: Resonance Integral database by Jura Kopecky [6]
 - macs_kadonis.ng: KADONIS database for MACS [7]
- EXFOR database [8]
 - thermal_exfor.tot: thermal (n,tot) cross sections
 - thermal_exfor.el: thermal (n,el) cross sections
 - thermal_exfor.nf: thermal (n,f) cross sections
 - thermal_exfor.ng: thermal (n,γ) cross sections
 - thermal_exfor.np: thermal (n,p) cross sections
 - thermal_exfor.na: thermal (n,α) cross sections
 - thermal_exfor.nu: thermal total nubar cross sections
 - thermal_exfor.nup: thermal prompt nubar cross sections
 - thermal_exfor.nud: thermal delayed nubar cross sections
 - macs_exfor.ng: MACS
 - RI_exfor.ng: (n,γ) resonance integral

+For comparison/validation, all corresponding values of CENDL

Output of EXFORTABLES

Processing the mother databases

- All input is returned in a unified output format
- Comparisons (ratios) between mother databases are made
- Final databases are made according to priority rules
- Comparisons (ratios) with evaluated NDL's are made.
- All output in logically named separate files.

Order of adoption for thermal cross sections, resonance integrals and MACS

- Kayzero database
- 2. Mughabghab 2018 Atlas
- 3. Sukhoruchkin 2015 Atlas
- 4. Mughabghab 2006 Atlas
- 5. RIPL or Kopecky database
- 6. EXFOR (the most recent value)
- For MACS, the order of adoption is
 - 1. Mughabghab 2018 Atlas
 - 2. Sukhoruchkin 2015 Atlas
 - 3. KADONIS database
 - 4. EXFOR (the most recent value)

Final database: if 1 doesn't exist, we take 2, if it doesn't exist, we take 3, etc.

Example: the final database for thermal capture cross sections

89	227	8	8.90000E+02	3.00000E+01	Mugh18	Ac227	6
98	228	8	1.23000E+02	1.50000E+01	Mugh18	Th228	1
98	229	0	6.28000E+01	6.00000E+00	Mugh18	Th229	0
98	230	8	2.29000E+01	3.00000E-01	Mugh18	Th230	5
90	232	0	7.34100E+00	3.90000E-02	Kayzero	Th232	27
98	233	0	1.33000E+03	5.00000E+01	Mugh18	Th233	3
98	234	8	1.80000E+00	5.00000E-01	Mugh18	Th234	1
91	231	0	2.00200E+02	2.30000E+00	Mugh18	Pa231	6
91	232	0	5.90000E+02	6.90000E+01	Mugh18	Pa232	3
91	233	0	3.95000E+01	1.10000E+00	Mugh18	Pa233	6
92	9	8	7.83000E+00	4.20000E-01	Stefanescu_1961_30073009	0666	2
92	229	8	9.88000E+01	8.00000E-01	Mugh06	U229	0
92	232	0	7.49000E+01	1.60000E+00	Mugh18	U232	3
92	233	0	4.57000E+01	7.00000E-01	Mugh18	U233	5
92	234	8	1.02500E+02	1.30000E+00	Mugh18	U234	6
92	235	6	9.88000E+01	8.0000E-01	Mugh18	U235	6
92	236	8	5.09000E+00	1.00000E-01	Mugh18	U236	15
92	237	0	4.43000E+02	1.67000E+02	Mugh18	U237	1
92	238	0	2.67000E+00	1.00000E-02	Kayzero	U238	15
92	239	8	2.20000E+01	5.00000E+00	Mugh18	U239	1
93	235	8	1.50000E+02	2.00000E+00	Mugh18	Np235	2
93	236	8	1.21000E+02	7.00000E+00	Sukhoruchkin	Np236	0
93	237	0	1.78800E+02	2.90000E+00	Mugh18	Np237	13

į,

Number of measurements In EXFOR

Example: Table with all possible options for thermal capture cross sections

AEA Atoms for Peace and Developmer

62	151	0	1.51400E+04	3.00000E+02	Mugh18		Sm151	
	ripl		1.52000E+04	3.00000E+0	2 JUK0			
	mugh06	5	1.51700E+04	3.00000E+0	2 Mugh06)		
	mugh18	8	1.51400E+04	3.0000E+0	2 Mugh18	3		
	sukhor	ruchkin	1.51700E+04	2.99000E+0	2 Sukhor	ruchkin		
	exfor		1.20000E+04	0.0000E+0	0 Melaik	a_1955_12086003		
	exfor		1.51700E+04	3.00000E+0	2 Mughat	ghab_2006_V10022001		
	exfor		1.50200E+04	5.25000E+0	2 Marror	ne_2006_22893007		
	cendl3	3.1	1.51239E+04	CE=	9.9893	37E-01	Library values	s obtained
	endfb8	8.0	1.51379E+04	CE=	9.9986	51E-01	from point w	ico filoc
	jeff3.	. 3	1.51294E+04	CE=	9,9936	00E-01		
	jendl4	4.0	1.51598E+04	CE=	1.0013	31E+00	(PREPRO's RE	CENT module)
	tendl.	2019	1.51334E+04	CE=	9.9956	54E-01	·	,
62	152	0	2.06000E+02	3.00000E+00	Mugh18		Sm152	
	ripl		2.06000E+02	1.50000E+0	1 JUKO			
	mugh06	5	2.06000E+02	6.0000E+0	0 Mugh08	j		
	mugh18	3	2.06000E+02	3.00000E+0	0 Mugh18	1		
	sukhor	ruchkin	2.06000E+02	6.0000E+0	0 Sukhor	uchkin		
	exfor		1.38000E+02	2.76000E+0	1 Seren_	1947_11447096		
	exfor		2.00000E+02	6.0000E+0	0 Patter	den_1958_21325012		
	exfor		2.24000E+02	7.00000E+0	0 Tatter	sall_1960_20638048		
	exfor		2.15000E+02	1.00000E+0	1 Fehr_1	960_12023006		
	exfor		2.09000E+02	9.0000E+0	0 Cabell	_1962_20627002		
	exfor		2.09100E+02	2.07000E+0	1 Bernat	ei_1962_12099002		
	exfor		2.06000E+02	6.0000E+0	0 Mughat	ghab_2006_V10022041		
	exfor		2.04800E+02	6.32832E+0	0 Karada	ig_2007_22964002		
	exfor		2.38930E+02	1.91100E+0	1 Nyarko	_2010_31698006		
	exfor		2.07300E+02	9.4000E+0	0 Agbema	va_2011_31717003		
	exfor		2.07000E+02	1.00000E+0	0 Farina	Arbocco_2013_232661	34	
	exfor		2.12000E+02	8.0000E+0	0 Nguyer	_2017_30843002		
	cendl3	3.1	2.06640E+02	CE=	1.0031	1E+00		
	endfb8	8.0	2.05946E+02	CE=	9.9973	88E-01		
	jeff3.	3	2.05974E+02	CE=	9.9987	4E-01		
	jendl4	4.0	2.05842E+02	CE=	9.9923	33E-01		
	tendl.	.2019	2.05971E+02	CE=	9.9985	59E-01		

/Users/koning/resonancetables/macs/nuc> cat Zr094.ng

#year	xs	dxs	Ref
1957	2.40000E-02	4.00000E-03	Macklin_1957_11399020
1963	1.90000E-02	4.00000E-03	Macklin_1963_11845005
1967	2.10000E-02	4.0000E-03	Macklin_1967_14322020
1976	3.40000E-02	5.00000E-03	Boldeman_1976_30358012
1982	2.52000E-02	3.60000E-03	Wyrick_1982_12831006
2000	2.60000E-02	1.00000E-03	Bao_2000_V0102164
2006	2.70000E-02	3.00000E-03	Mughabghab_2006_V1001379
2015	2.80000E-02	6.0000E-04	Tessler_2015_31765004

Example: Ratio of EXFOR MACS vs final database

2	z	А	Tiso	Ratio	xs(this)	xs(final)	Ref Nuc	
_	1	1	0	1.00000E+00	2.54000E-04	2.54000E-04	Bao_2000_V0102002	H001
	1	2	0	1.00000E+00	3.00000E-06	3.00000E-06	Bao_2000_V0102003	H002
	2	3	6	4.38095E-01	9.20000E-06	2.10000E-05	Wervelman_1989_22139002	He003
	2	3	8	4.33333E-01	9.10000E-06	2.10000E-05	Wervelman_1991_22230003	He003
	2	3	0	3.61905E-01	7.60000E-06	2.10000E-05	Bao_2000_V0102004	He003
	2	3	0	3.66667E-01	7.70000E-06	2.10000E-05	Mughabghab_2006_V1001008	He003
	3	7	0	4.52099E-01	2.10000E-05	4.64500E-05	Wiescher_1989_22171004	Li007
	3	7	0	4.32723E-01	2.01000E-05	4.64500E-05	Wiescher_1989_22171003	Li007
	3	7	0	9.04198E-01	4.20000E-05	4.64500E-05	Bao_2000_V0102005	Li007
	3	7	0	8.46071E-01	3.93000E-05	4.64500E-05	Mughabghab_2006_V1001015	Li007
	4	9	0	1.11828E+00	1.04000E-05	9.30000E-06	Bao_2000_V0102006	Be009
	4	9	0	1.03226E+00	9.60000E-06	9.30000E-06	Wallner_2008_22994002	Be009
#	6	0	0	1.00000E+00	2.00000E-04	2.00000E-04	Macklin_1963_11331002	C000
	6	12	0	1.00000E+00	1.54000E-05	1.54000E-05	Ohsaki_1994_23002004	C012
	6	12	0	1.00000E+00	1.54000E-05	1.54000E-05	Bao_2000_V0102007	C012
	6	12	0	1.00000E+00	1.54000E-05	1.54000E-05	Mughabghab_2006_V1001027	C012
	6	13	0	7.31707E-01	2.10000E-05	2.87000E-05	Bao_2000_V0102008	C013
	6	13	0	5.03484E-01	1.44500E-05	2.87000E-05	Wallner_2008_22994003	C013
	6	13	6	2.33449E-01	6.70000E-06	2.87000E-05	Wallner_2016_23295004	C013
	6	14	0	1.13067E+00	8.48000E-06	7.50000E-06	Bao_2000_V0102010	C014

Lib	F(C/E)	N	N <5%	N < 20%	N < 50%
CENDL-3.1	1.036	201	129(0.642)	177(0.881)	187(0.930)
ENDFB-8.0	1.022	375	284(0.757)	332(0.885)	351(0.936)
JEFF-3.1	1.024	425	315(0.741)	377(0.887)	398(0.936)
JENDL-4.0	1.025	359	269(0.749)	320(0.891)	334(0.930)
TENDL-2019	1.008	446	416(0.933)	431(0.966)	434(0.973)

Ratio over final database

CENDL3.1 Thermal Cross Sections

Ratio over final database ENDFB8.0 Thermal Cross Sections

Ratio over final database JEFF3.3 Thermal Cross Sections

Ratio over final database JENDL4.0 Thermal Cross Sections

Ratio over final database TENDL.2019 Thermal Cross Sections

C/E

TENDL-2019 1.058 412 146(0.354) 263(0.638)

RESONANCETABLES-1.0

Database for thermal cross sections, MACS and average resonance parameters

Arjan Koning and Dimitri Rochman

Draft version

Available on new website soon, together with other TALYS-related software

Contents

1	Introduction	. 9
1.1	This tutorial	10
2	Installation and getting started	11
2.1	The RESONANCETABLES package	11
2.2	The resonancetables.190 code	12
3	The mother database	13
3.1	Compiled and evaluated databases	13
3.2	Values from evaluated nuclear data libraries	14
4	Processing the mother database	15
4.1	Priorities for the final database	15
4.2	Ratios between databases	16
5	The final database	17
5.1	The RESONANCETABLES	17
5.1.1	Thermal cross sections	18
5.1.2	Maxwellian-averaged cross sections	18
5.1.3	Average resonance data	18
5.2	Comparison with nuclear data libraries	18
6	Outlook and conclusions	31
	Bibliography	31

New webpage under construction at IAEA

TALYS-Related Software and Databases

TALYS and the TALYS-related packages are open source software and datasets (GPL License) for the simulation of nuclear reactions.

EXFORTABLES

RESONANCETABLES

	Arjan Koning		Arjan Koning; Dimitri Rochman				
	Experimental nuclear reaction database based on EXFOR.		Database for thermal cross sections, MACS and average resonance				
			parameters.				
	★ Download EXFORTABLES-1.0 ■ Read Tutorial		L Download RESONANCETABLES-1.0				
			Created at () IAEA				
© 2020 IAEA Contact							

TASMAN, TEFAL, Libraries, ENDFTABLES, ISOTOPIA and Tools for TALYS ("T6") to follow

SUMMARY

- Systematic nuclear data evaluation requires all underlying data to be readily available. Preferably by API's, until that time by complete databases.
- RESONANCETABLES reads several existing compilations and evaluations for thermal cross sections, MACS and resonance integrals, and returns that in a unified tabular format
- RESONANCETABLES uses priority rules which are subjective. Evaluation of the quality of each entry is essential but also timeconsuming
- The so-called final databases are used for validation of TENDL-2019 and for the production of TENDL-2021.

What next?

- Towards an evaluated, machine-readable resonance database:
 - Average or single-energy quantities, like in this work, were "easy" to digitise and maintain
 - What about the resonance parameters?
 - Copyright issues?
 - Quantify quality of a particular set of resonance parameters:
 - Differential
 - Integral
 - Be complete, i.e. include resonance parameters from all Atlases, EXFOR and major NDL's
 - Finally use an adequate format (YAML, JSON,...)
 - Perhaps start with the average and single-energy quantities using expert knowledge: individual nuclide priorities instead of global ones
- If enough interest, IAEA could start an initiative on this

Thank you!

