PAUL SCHERRER INSTITUT

<u>A. Vasiliev</u>, H. Ferroukhi, M. Pecchia, D. Rochman, A. Pautz :: Paul Scherrer Institut and A. Laureau, V. Lamirand (EPFL)

Revision of PSI calculation capabilities and validation experience on the BEPU-type reactor dosimetry applications

17th International Symposium on Reactor Dosimetry EPFL, Lausanne, 21-26 May 20233.

Current status of the LRT/PSI FNF calculation methodology

A 2D-1D synthesized approach employed for the neutron source strength specifications at each fuel assembly level: 2D radial pin-wise distributions with laterally-averaged 1D axial distributions. The 2D spectrum specifications were based on the FA-average major fissionable nuclides concentrations.

Extensions towards shielding and activation simulations

CASMO-5/SIMULATE-3 Geometry Core-follow calculation - Source term Material - Time-dependent total neutron SOURCE4MC source [n/s] MCNP model template SOURCE4MC-X COMPLINK ADVANTG MC model generator WW (PSI in-house tool) generation Automatic model Update isotopic update vectors MCNP6 FISPACT-II Neutron transport Nuclide evolution Neutron flux solver solver FNF; dpa; Activity; detector responses

Employment of ADVANTG for VR

LRT methodology for ECD WF based on Green's function evaluation using MCNP PTRAC file

Coupling with FISPACT-II

Allows evaluation of 3D importance maps upon a user defined grid using a single MCNP run

PSI NDUQ tool NUSS for MC simulations

Nuclear data format	Uncertainty format	Global (sampling)	Local (SCS ^T)
Basic data	Basic data	TMC	
Evaluated data	Evaluated data	NUDUNA	
Pointwise	Multigroup	NUSS ✓ MCNPX	pert card MCNP6 KSEN McCARD MVP
Multigroup		XSUSA	TSUNAMI-3D MMKKENO

http://www.psi.ch/lrt

- IQNet

Illustration on the dosimetry experimental data available at PSI

Swiss 'Pre-convoy' 3-loops 3000MWt PWR (KKG)

Sinbad HBR-II and PCA-Replica benchmark models complementing the PSI validation database

Illustration of the H.B. Robinson-II RPV Dosimetry Benchmark, as modelled with MCNPX.

Illustration on of the PCA-Replica MCNP calculation

Correlations between PWR FNF and the dosimetry reaction rates for the considered models.

model.

Swiss PWR	HBR2-capsule							HBR2-cavity						
	Np-237	U- 238	Ni-58	Fe-54	Ti-46	Cu-63	Np-237	U-238	Ni-58	Fe-54	Ti-46	Cu-63		
PWR_Barrel	0.94	0.89	0.74	0.71	0.51	0.37	0.80	0.72	0.59	0.49	0.27	0.20		
	[0.92, 0.95]	[0.86, 0.91]	[0.68, 0.79]	[0.64, 0.76]	[0.42, 0.60]	[0.26, 0.47]	[0.75, 0.84]	[0.66, 0.78]	[0.50, 0.66]	[0.40, 0.58]	[0.15, 0.38]	[0.08, 0.31]		
PWR_RPV	0.93	0.91	0.81	0.78	0.63	0.52	0.81	0.78	0.74	0.66	0.45	0.37		
	[0.91, 0.94]	[0.89, 0.93]	[0.76, 0.85]	[0.73, 0.82]	[0.55, 0.70]	[0.42, 0.60]	[0.77, 0.85]	[0.73, 0.83]	[0.68, 0.79]	[0.59, 0.72]	[0.35, 0.54]	[0.26, 0.47]		
PWR_BIO1	0.88	0.88	0.75	0.71	0.60	0.52	0.87	0.91	0.82	0.73	0.50	0.43		
	[0.84, 0.90]	[0.85, 0.90]	[0.69, 0.80]	[0.65, 0.77]	[0.52, 0.68]	[0.42, 0.60]	[0.84, 0.90]	[0.89, 0.93]	[0.78, 0.86]	[0.66, 0.78]	[0.41, 0.59]	[0.32, 0.52]		
PWR_BIO2	0.60	0.65	0.76	0.76	0.73	0.66	0.44	0.48	0.82	0.83	0.73	0.66		
	[0.51, 0.67]	[0.57, 0.72]	[0.70, 0.80]	[0.70, 0.80]	[0.67, 0.78]	[0.59, 0.72]	[0.34, 0.54]	[0.38, 0.57]	[0.77, 0.85]	[0.79, 0.87]	[0.67, 0.78]	[0.58, 0.72]		

Swiss PWR		PCA-REPLICA								
	1_ln-115	1_S-32	2_In-115	2_S-32	3_ln-115	3_S-32				
PWR_Barrel	0.70	0.54	0.67	0.48	0.63	0.42				
	[0.63, 0.76]	[0.45, 0.62]	[0.60, 0.73]	[0.38, 0.57]	[0.56, 0.70]	[0.32, 0.52]				
PWR_RPV	0.87	0.78	0.82	0.74	0.77	0.68				
	[0.84, 0.90]	[0.72, 0.82]	[0.77, 0.85]	[0.68, 0.79]	[0.71, 0.81]	[0.61, 0.74]				
PWR_BIO1	0.84	0.70	0.88	0.76	0.87	0.73				
	[0.80, 0.87]	[0.63, 0.76]	[0.85, 0.91]	[0.70, 0.81]	[0.84, 0.90]	[0.67, 0.78]				
PWR_BIO2	0.58	0.77	0.47	0.85	0.43	0.83				
	[0.50, 0.66]	[0.71, 0.81]	[0.37, 0.56]	[0.81, 0.88]	[0.32, 0.52]	[0.79, 0.86]				

PAUL SCHERRER INSTITUT

Summary of the LRT/PSI LWR dosimetry validation database

Experimental data source	Identification	N. of irrad. cycles	Detectors	C/E sample size							
Swiss PWR/ PSI NES Hotlab	RPV Scraping test 1 [2]	21	12								
	RPV Scraping test 2 [7], 4 out of 27 elevations not included	test 2 27 27 ⁵⁴ Fe(n,p) ⁵⁴ Mn; ⁹³ N		46 (23 times each det.)							
	Barrel irrad. channel, "Gradient Probes" [7]	27	⁵⁴ Fe(n,p) ⁵⁴ Mn; ⁹³ Nb(n,n') ^{93m} Nb	12 (2x3 times each det.)							
Swiss BWR/ PSI NES Hotlab	Set 1 Surveillance capsule (to be publ.)	11	54 Fe(n,p) 54 Mn; 93 Nb(n,n') 93m Nb; 63 Cu(n, α) 60 Co	12 (4 times each det.)							
	Set 2 Fluence monitors; RPV cavity [8]	4×1	⁵⁴ Fe(n,p) ⁵⁴ Mn; ⁹³ Nb(n,n') ^{93m} Nb	7 (3 times ⁵⁴ Fe and 4 times ⁹³ Nb)							
	Set 3 Fluence monitors; RPV cavity [9]	2	⁵⁴ Fe(n,p) ⁵⁴ Mn; ⁹³ Nb(n,n') ^{93m} Nb	2 (1 time each det.)							
OECD/ NEA/WPRS SINBAD reactor shielding benchmarks (PWRs)	HBR2-surveillance capsule [10]	9	²³⁷ Np(n,f) ¹³⁷ Cs; ²³⁸ U(n,f) ¹³⁷ Cs; ⁵⁸ Ni(n,p) ⁵⁸ Co; ⁵⁴ Fe(n,p) ⁵⁴ Mn; ⁴⁶ Ti(n,p) ⁴⁶ Sc; ⁶³ Cu(n,a) ⁶⁰ Co	6 (1 time each det.)							
	HBR2- RPV cavity [10]	9	²³⁷ Np(n,f) ¹³⁷ Cs; ²³⁸ U(n,f) ¹³⁷ Cs; ⁵⁸ Ni(n,p) ⁵⁸ Co; ⁵⁴ Fe(n,p) ⁵⁴ Mn; ⁴⁶ Ti(n,p) ⁴⁶ Sc; ⁶³ Cu(n,a) ⁶⁰ Co	6 (1 time each det.)							
	PCA-Replica [11]	NA	115 In(n,n') 115m In; 32 S(n,p) 32 P	6 (3 times each det.)							
	Total number of C/E values										

PAUL SCHERRER INSTITUT

Illustration on the PWR RPV related validation results

N	NDL-	Validation case	C/F	ND-	ND-	ND-
11	transport	v andation case	CL	transport, %	detector, %	total, %
1	E-7.1	PWR_BAR_Fe54	0.993	6.6	2.2	7.0
2	E-7.1	PWR_BAR_Nb93	1.050	7.0	4.4	8.3
3	E-7.1	PWR_RPV_Fe54	1.030	11.0	2.2	11.2
4	E-7.1	PWR_RPV_Nb93	1.034	10.8	4.4	11.7
5	E-7.0	HBR2_Np237	0.938	8.0	1.7	8.2
6	E-7.0	HBR2_U238	0.870	8.0	2.0	8.2
7	E-7.0	HBR2_Ni58	0.885	8.0	1.7	8.2
8	E-7.0	HBR2_Fe54	0.899	8.0	2.1	8.3
9	E-7.0	HBR2_Ti46	0.981	9.0	3.1	9.5
10	E-7.0	HBR2_Cu63	0.862	11.0	2.8	11.4
11	E-7.1	PCA_In115	0.963	7.0	7.2	10.0
12	E-7.1	PCA S32	0.935	6.0	6.4	8.7

For the ND uncertainties propagation in the neutron transport calculations the covariance matrices (CM) of ENDF/B-VII.1 ("E-7.1) were used for all cases with NUSS

The detector related ND uncertainties were propagated deterministically

Pearson correlation coefficients for the selected quantities of interest

		NR_Bar_dpa	NR_RPV_dpa	NR_Bar_FNF	<u>wr_</u> rpv_fnf	NR_BAR_Fe5₄	NR_BAR_Nb9.	NR_RPV_Fe54	WR_RPV_Nb93	3R2_Np237	3R2_U238	3R2_Ni58	3R2_Fe54	3R2_Ti46	3R2_Cu63	CA_In115	CA_S32	ETALE_Rh103	ETALE_In115	ETALE_NI58	ETALE_Fe54
		Р	Ы	P	đ	۲ ۲	P	۲ ا	۲ ۲	Ŧ	Ī	Ī	Ī	Ŧ	王	A	A	8	B	E E	E S
DW/D Dar dra	1	1	2	3	4	5	6	/	8	9	10	11	12	13	14	15	16	1/	18	19	20
	1	1.00	1.00	0.90	0.00	0.95	0.99	0.76	0.00	0.91	0.87	0.81	0.78	0.57	0.41	0.02	0.00	0.61	0.80	0.60	0.65
	2	0.88	1.00	0.84	0.95	0.92	0.88	0.94	0.99	0.88	0.88	0.88	0.80	0.70	0.57	0.79	0.85	0.57	0.59	0.61	0.61
	د ۸	0.90	0.04	0.00	1.00	0.07	0.90	0.00	0.07	0.94	0.69	0.74	0.71	0.51	0.57	0.70	0.54	0.75	0.60	0.01	0.79
$\mathbf{P} \mathbf{V} \mathbf{K} \mathbf{K} \mathbf{F} \mathbf{V} \mathbf{F} \mathbf{N} \mathbf{F}$	4	0.00	0.95	0.90	0.94	1.00	0.69	0.65	0.96	0.95	0.91	0.01	0.76	0.05	0.52	0.67	0.78	0.50	0.02	0.56	0.57
DWR_DAR_FE34	5	0.95	0.92	0.07	0.04	0.04	1.00	0.87	0.90	0.04	0.85	0.87	0.65	0.00	0.52	0.57	0.07	0.70	0.74	0.02	0.05
DWR BDV 6654	7	0.35	0.88	0.58	0.85	0.94	0.74	1.00	0.89	0.33	0.89	0.80	0.77	0.50	0.40	0.00	0.33	0.70	0.80	0.85	0.54
PWR_RPV_Nb93	י צ	0.70	0.94	0.08	0.85	0.87	0.74	0.92	1 00	0.75	0.70	0.80	0.80	0.80	0.70	0.05	0.83	0.43	0.45	0.55	0.55
HBB2 Np237	٥ ۵	0.00	0.99	0.07	0.90	0.90	0.89	0.92	0.01	1.00	0.90	0.80	0.04	0.00	0.30	0.85	0.67	0.54	0.00	0.01	0.00
HBR2 11238	10	0.91	0.88	0.94	0.95	0.84	0.93	0.75	0.91	0.98	1.00	0.04	0.80	0.00	0.47	0.80	0.07	0.55	0.72	0.70	0.08
HBR2 Ni58	11	0.87	0.00	0.05	0.91	0.85	0.80	0.70	0.50	0.30	0.90	1.00	1.00	0.00	0.34	0.70	0.71	0.53	0.00	0.67	0.00
	12	0.01	0.86	0.74	0.01	0.87	0.00	0.86	0.80	0.80	0.50	1.00	1.00	0.00	0.74	0.02	0.74	0.57	0.57	0.00	0.65
HBR2 Ti46	13	0.78	0.00	0.51	0.70	0.65	0.56	0.80	0.64	0.60	0.67	0.88	0.91	1.00	0.96	0.38	0.75	0.30	0.33	0.04	0.05
	1/	0.37	0.57	0.31	0.03	0.52	0.30	0.00	0.56	0.00	0.54	0.00	0.77	0.96	1 00	0.42	0.00	0.40	0.35	0.47	0.40
PCA In115	15	0.41	0.79	0.70	0.32	0.52	0.40	0.65	0.83	0.80	0.78	0.62	0.58	0.30	0.33	1 00	0.45	0.20	0.20	0.34	0.24
PCA \$32	16	0.60	0.85	0.54	0.78	0.67	0.59	0.83	0.84	0.67	0.70	0.74	0.30	0.60	0.33	0.85	1 00	0.25	0.33	0.20	0.27
10/(_552	10	0.00	0.00	0.54	0.70	0.07	0.55	0.00	0.01	0.07	0.71	0.74	0.75	0.00	0.45	0.05	1.00	0.20	0.21	0.27	0.27
PETALE_Rh103	17	0.81	0.57	0.73	0.50	0.76	0.78	0.49	0.54	0.59	0.55	0.57	0.56	0.40	0.26	0.21	0.28	1.00	0.92	0.87	0.86
PETALE_In115	18	0.86	0.59	0.86	0.62	0.74	0.86	0.45	0.60	0.72	0.66	0.57	0.55	0.39	0.26	0.35	0.24	0.92	1.00	0.89	0.87
PETALE_Ni58	19	0.86	0.61	0.81	0.58	0.82	0.85	0.53	0.61	0.70	0.67	0.66	0.64	0.47	0.34	0.26	0.27	0.87	0.89	1.00	1.00
PETALE_Fe54	20	0.85	0.61	0.79	0.57	0.83	0.84	0.53	0.60	0.68	0.66	0.66	0.65	0.48	0.34	0.24	0.27	0.86	0.87	1.00	1.00

If only highly "representative" data selected for validation (r>0.8), the average C/E-1 = -3.0%

Illustration on the PWR RPV FNF assessment

FNF and dpa attenuation inside the PWR RPV wall for selected reactor cycles; normalized.

Best estimate plus uncertainty (BEPU) FNF and *dpa* assessments at zones outside the beltline height are more appropriate than simplified evaluations based on generic approximations

Information from the modern NDLs; left - mu-bar uncertainties; right - ration of the mu-bars

Model	PWR-GP	PWR-ST	BWR-D
σ ^{FNF} , (%) / "Sandwich rule"	5 (E>0.1MeV)	NA	12
σ ^{FNF} , (%) / NUSS (+nubar, +chi)	8*	11*	15*
MAX(C/E-1), (%)	15	15	20 (15)
<c e-1="">, Fe-54, (%)</c>	5*	5*	18* (-1)
<c e-1="">, Nb-93, (%)</c>	-1*	3*	9* (-9)

For RPV FNF assessments, just the differences between the JENDL-4.0 and ENDF/B-VII.1 libraries for the angular distributions of ${}^{16}O(n,n)$ lead to the differences of ~10% for PWR and ~20% for BWR

Need for detailed irradiation history

Detailed RPF behavior of a specific node in comparison with Middle-of-Cycle (MOC) RPF, cycle-average RPF and several Middle-of-Step (MOS) RPF values

Subdivision of the entire cycle irradiation history into shorter time/BU steps allows noticeably more accurate dosimetry assessments

- Several experimental campaigns were performed in Switzerland for validation of RPV FNF assessments, in collaboration of the Swiss utilities, PSI and the reactor vendor companies, for both PWR and BWR reactors
- A "similarity analysis" has been performed using NUSS NDUQ capability, demonstrating applicability of the available experimental data for RPV FNF validation, as well showing similarity of the PSI proprietary models with selected publicly open SINBAD reactor shielding benchmarks -HBR-II, PCA-Replica
- In general, very reasonable C/E results have been achieved (0.8<C/E<1.2), taking into account the associated experimental and calculation uncertainties

Further methodology upgrades should be relevant for LWRs LTO and the following tasks are proposed for realization:

- Upgrade the CASMO/SIMULATE/MCNP+FISPACT scheme to CASMO/SIMULATE/SNF/MCNP+FISPACT for explicit 3D neutron source strength and spectrum specifications
- Implement an automatized procedure for optimized step-wise representation of the operating history and the neutron source in the MCNP models, based on the core-follow CASMO5/SIMULATE5 information
- When become available, the angular scattering distributions' uncertainties will be necessary to include into the NDUQ assessments

So far, the coolant density/temperature in the KKG PWR core bypass region was preliminary investigated at PSI with OpenFOAM CFD models and this capability should be further advanced for BEPU RPV FNF simulations

Wir schaffen Wissen – heute für morgen

My thanks go to

- Swissnuclear
- PSI/NES Hotlab
- KKL
- KKG
- LRS/EPFL

