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ABSTRACT 

In the present work a comparison of two distinct approaches on the interpretation 

of validation results for light water reactor (LWR) fuel criticality assessments is 

presented: one based on the frequentist tolerance limits and another on the 

Bayesian framework. In general, both the frequentist statistics and the Bayesian 

model approaches have their intrinsic advantages and disadvantages and, 

therefore, it is relevant to compare results of criticality safety evaluations (CSE) 

obtained with both methods. Of particular interest in this context is the 

application of CSE with the Burnup Credit (BUC) concept for LWR used 

nuclear fuel (UNF), the composition of which differs from the fresh fuel 

compositions primarily available worldwide for validation studies. This paper is 

oriented towards providing an illustration on the comparison of different CSE 

variants in application to a model of an UNF disposal canister filled with 

identical fuel assemblies, as a function of burnup. In the performed study it was 

found that the Bayesian approach provides less penalizing results, leading in the 

considered example to some relaxation of the burnup requirement for the UNF 

criticality safety, namely by ~2.5MWd/kg for the case of the 5wt% initially 

enriched pressurized water reactor (PWR) fuel. However, the behavior of the 

Bayesian based results is counterintuitive – the safety margins become less 

penalizing as burnout increases, although no benchmarks with used nuclear fuel 

are available in the employed validation suite. Such performance of the utilized 

methods should be further verified in future enhanced studies.  

1. INTRODUCTION 

In the field of nuclear criticality safety (NCS) there exist well established procedures for the 

definition of safety criteria on the basis of appropriate validation studies (i.e., a comparison of 

calculation results with evaluated experimental measurements). Many methodologies are 

traditionally based on the use of the frequentist statistics concepts, such as tolerance intervals. 

There also exists a comprehensive collection of evaluated criticality benchmark experiments, 

namely the International Criticality Safety Benchmark Evaluation Project (ICSBEP) 

Handbook, which facilitates required validation studies. The conventional frequentist inference 

approach assumes that the benchmark experiments selected for validation studies represent well 

an application system of interest.  
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There also exist methodologies based on the Bayesian inference3 [1],[2], which can adjust 

calculation results using the information on similarity between an application case and the 

analysed benchmarks. Such information may be incorporated in the frequentist-based 

methodologies too, e.g. as concerns nuclear data uncertainty propagation. Thus, advanced CSE 

methodologies require knowledge of the correlations between the criticality calculation results 

(i.e. the effective neutron multiplication factor, keff) for an application case and the benchmarks, 

as well as the correlations between the benchmarks themselves. In general, the origins of the 

correlations can be related to the commonality of the system designs, measurement techniques 

or, in particular, due to the employed code and nuclear data libraries. 

The given work is an extension of the previous studies on the subject of CSE and BUC realised 

at PSI with modern calculation capabilities, in particular as concerns the propagation of nuclear 

data uncertainties [3],[4]. On the one hand, recently, a new activity has been proposed within 

the OECD/NEA/NSC/WPNCS, to assess the level of maturity and reliability of available BUC 

methodologies for applications related, for instance, to final disposal canisters loaded with UNF 

[5]. The motivation was related to the fact that existing CSE methodologies, including their 

validation bases, may have different levels of conservatism and comprehensiveness, depending 

on the application type. Some methodologies can be based on “generic” Nuclear Criticality 

Safety (NCS) criteria, while other “case-specific” criteria can be defined, for instance, involving 

adjusted Nuclear Data (ND) or an adjusted calculation bias and the related uncertainty for an 

application system 𝑘eff, based on either frequentist or Bayesian statistics (or even their 

combination). The optimal level of complexity of the methodology is still an open question 

presently, in particular in the context of potential industrial applications such as NCS of UNF 

final disposal canisters. For example, the use of a single generic Upper Subcritical Limit (USL) 

would simplify the derivation of the loading curves for UNF noticeably. Case-specific (e.g. 

Burnup (BU)-dependent USL) approaches, instead, can be more efficient for reducing the 

number of required disposal canisters (or for savings on the canister design). The effects of such 

potential methodological differences on the loading curves, in terms of required minimal BU 

vs. initial fuel assemblies' enrichment, are not obvious. Therefore, OECD/NEA/NSC/WPNCS 

SG13 exercise was proposed to examine such effects by a direct comparison of the participants’ 

results for a well-defined and simplified pseudo-application case [5],[6]. 

On the other hand, it was also recently observed at PSI that the use of the covariance matrices 

(CM) in the calculated to experimental (C/E) validation results’ evaluations may lead to 

implausible results [7]. An assumption was made in [7] that the observed results belong to the 

‘PPP’-type anomaly [8],[9] although further verification and analysis are required. The main 

concern, which also served as a motivation for this work, was whether the considered CM might 

similarly lead to problematic results if applied with a Bayesian updating framework, such as 

described in [10]. 

For the reader’s convenience, Section 2 of this paper provides a concise summary on the 

employed CSE methodologies. As pseudo application cases, test models of the Swiss UNF 

canister corresponding to Nagra’s preliminary design [11] were used. Section 3 summarises 

results of relevant verification studies (here the verification of the calculation procedures and 

tools is meant), to justify correctness of the applied methodology realisations. Section 4 presents 

the main results obtained in this work and finally conclusions are provided in Section 5. 

                                                 
3 Interested readers can find robust definitions for the frequentist and Bayesian inferences, for instance, in [1]. 

Furthermore, for a brief comparison of the Bayesian philosophy to frequentist philosophy in application to nuclear 

fuel systems CSE, work [2] can be recommended. 
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2. BRIEF DESCRIPTION OF THE APPLIED METHODOLOGIES 

2.1 Standard CSE Approach for Fresh LWR Fuel 

The current reference PSI CSE approach was presented in detail in [12],[7]. The NCS criterion 

is defined as 

𝑘𝑎
𝑐𝑎𝑙 + Δ𝑘𝑎

𝑐𝑎𝑙 < 𝑈𝑆𝐿 = 𝑘𝐿𝑇𝐵 − Δ𝑘𝐴𝑀 − Δ𝑘𝐴𝑂𝐴 ,  (1) 

where 𝑘𝑎
𝑐𝑎𝑙 and Δ𝑘𝑎

𝑐𝑎𝑙 are an application case 𝑘𝑒𝑓𝑓 value and its calculation uncertainty; Δ𝑘𝐴𝑀 

is an “administrative margin” to guarantee sub-criticality, and Δ𝑘𝐴𝑂𝐴 is an additional margin if 

the application system is outside the validation area of applicability (AOA).  

The 𝑘𝐿𝑇𝐵 parameter is a lower tolerance bound (LTB) which can be estimated based on the 

sample of the calculated-to-benchmark 𝑘𝑒𝑓𝑓 values, 𝑘𝑖 =
𝑘𝑖

𝑐𝑎𝑙

𝑘𝑖
𝑏𝑒𝑛𝑐ℎ .  

The Upper Subcritical Limit (USL) in such approach is generic and can be applied to any LWR 

fuel configuration. The case of BUC is not explicitly considered in this work and the required 

modifications of (1) to be applicable for BUC, according to PSI’s current methodology, were 

reported in [11]. For better illustration of the Δ𝑘𝑎
𝑐𝑎𝑙 uncertainty feature, Eq. (1) can be re-written 

as 

𝑘𝑎
𝑐𝑎𝑙 + Δ𝑘𝑎

𝑐𝑎𝑙 − 𝑘𝐿𝑇𝐵 < −Δ𝑘𝐴𝑀 − Δ𝑘𝐴𝑂𝐴.  (2) 

In the following, the value of Δ𝑘𝐴𝑀 is assumed to be 0.05. The component Δ𝑘𝐴𝑂𝐴 is out of 

scope of the given work and in the following is set to zero. The 𝑘𝑛𝑜𝑟𝑚𝑎𝑙
𝐿𝑇𝐵  value can be determined 

using the assumption of normality:  

𝑘𝑛𝑜𝑟𝑚𝑎𝑙
𝐿𝑇𝐵 = 𝑘 − 𝑘1(𝛼, 𝑝, 𝑁) × 𝑠, (3) 

or without any distribution assumption, using order statistics [12]. Parameters 𝑘 and 𝑠 are 

defined as 

�̅� =
∑ 𝑤𝑖𝑘𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

 , 𝑠 = √
1

(𝑁−1)
∑ 𝑤𝑖(𝑘𝑖−�̅�)2𝑁

𝑖=1

1

𝑁
∑ 𝑤𝑖

𝑁
𝑖=1

 ,  (4) 

where the weighting factor 𝑤𝑖 is defined by 
1

𝜎𝑖
2, which includes the Monte Carlo statistical 

uncertainty (𝜎𝑖
𝑀𝐶 , usually negligible), optionally - the ND-related uncertainty (𝜎𝑖

𝑁𝐷) [3], and 

the experimental benchmark uncertainty (𝜎𝑖
𝑏𝑒𝑛𝑐ℎ): 

𝜎𝑖 = 𝑘𝑖√(
𝜎𝑖

𝑀𝐶

𝑘𝑖
𝑐𝑎𝑙)

2

+ (
𝜎𝑖

𝑁𝐷

𝑘𝑖
𝑐𝑎𝑙)

2

+ (
𝜎𝑖

𝑏𝑒𝑛𝑐ℎ

𝑘𝑖
𝑏𝑒𝑛𝑐ℎ)

2

. (5) 

In this case, less reliable benchmarks contribute less in the determination of 𝑘𝑛𝑜𝑟𝑚𝑎𝑙
𝐿𝑇𝐵  and vice 

versa. Note that following the proposal made in [3], the nuclear data uncertainties of the 

calculated keff values were also included in the weighting procedure in the present work, though 

it should be mentioned that, for the given study, their contribution in Eq. (4) did not make strong 

changes to the final results. 
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In case of the order statistics, 𝑘𝑁𝑃
𝐿𝑇𝐵 value is defined as  

𝑘𝑁𝑃
𝐿𝑇𝐵(𝛼, 𝑝, 𝑁) = min

𝑙(𝛼,𝑝,𝑁)
(𝑘𝑖=1,𝑁),  (6) 

𝑙(𝛼, 𝑝, 𝑁) = argmax
𝑙∈[1,𝑁]

(1 − ∑
𝑁!

𝑖!(𝑁−𝑖)!
(1 − 𝑝)𝑖𝑝𝑁−𝑖𝑙−1

𝑖=0 ≥ 1 − 𝛼).  (7) 

The parameters 𝑘𝑎
𝑐𝑎𝑙 and 𝑘𝐿𝑇𝐵 are in fact random variables dependent on the ND library 

(NDL). The uncertainty of the difference (𝑘𝐿𝑇𝐵 − 𝑘𝑎
𝑐𝑎𝑙) depends on the correlations r (the 

Pearson correlation coefficients) between the application system and the 𝑘𝐿𝑇𝐵 value: 

𝜎
(𝑘𝐿𝑇𝐵−𝑘𝑎

𝑐𝑎𝑙)
𝑁𝐷 = √𝑉𝐴𝑅(𝑘𝐿𝑇𝐵 − 𝑘𝑎

𝑐𝑎𝑙) = √𝑉𝐴𝑅(𝑘𝐿𝑇𝐵) + 𝑉𝐴𝑅(𝑘𝑎
𝑐𝑎𝑙) − 2𝐶𝑂𝑉(𝑘𝐿𝑇𝐵 , 𝑘𝑎

𝑐𝑎𝑙) = 

 

= √(𝜎𝑘𝐿𝑇𝐵
𝑁𝐷 )

2
+ (𝜎

𝑘𝑎
𝑐𝑎𝑙

𝑁𝐷 )
2

− 2𝑟(𝑘𝐿𝑇𝐵,𝑘𝑎
𝑐𝑎𝑙)𝜎𝑘𝐿𝑇𝐵

𝑁𝐷 𝜎
𝑘𝑎

𝑐𝑎𝑙
𝑁𝐷  .  (8) 

The application case uncertainty Δ𝑘𝑎
𝑐𝑎𝑙, in general, consists of the ND-unrelated, such as 

technological/manufactural tolerances, and ND-related components:  

Δ𝑘𝑎
𝑐𝑎𝑙 = 𝑛√𝜎

(𝑘𝑎
𝑐𝑎𝑙−𝑘𝐿𝑇𝐵)

𝑛𝑜𝑡 𝑁𝐷 2
+ 𝜎

(𝑘𝑎
𝑐𝑎𝑙−𝑘𝐿𝑇𝐵)

𝑁𝐷 2
 .  (9) 

In the case 𝑘𝑒𝑓𝑓 is determined by means of Monte Carlo calculations, the statistical uncertainty 

should be taken into account in 𝜎
(𝑘𝑎

𝑐𝑎𝑙−𝑘𝐿𝑇𝐵)
𝑛𝑜𝑡 𝑁𝐷 . However, in the modern practice it normally has 

a negligible value compared, e.g., to the ND-related uncertainties. In this paper only the ND-

related uncertainties will be considered and thus Δ𝑘𝑎
𝑐𝑎𝑙=n𝜎

(𝑘𝐿𝑇𝐵−𝑘𝑎
𝑐𝑎𝑙)

𝑁𝐷 . In the following, the case 

of n=2 is considered. The value of 𝜎
(𝑘𝐿𝑇𝐵−𝑘𝑎

𝑐𝑎𝑙)
𝑁𝐷  can be calculated with the PSI in-house tool 

NUSS [13],[4]. The use of the randomly sampled ND generated with NUSS allows evaluation 

of the correlation and respectively covariance matrices for parameters of interest, e.g., the 

application case and benchmarks uncertainties [14].  

2.2 Bayesian Model Approach 

An alternative to the above presented frequentist approach is the Bayesian based approach, 

which is well described, e.g., in [15]. Without repeating the details presented in [15], here only 

the most relevant equations used by the Bayesian model (BM) methodology are outlined. The 

Bayesian concept assumes adjustment of the application case calculated 𝑘𝑎
𝑐𝑎𝑙 value and its 

uncertainty based on the validation results and the stronger the correlations between an 

application system and the benchmark are, the more significant can be the adjustment. Similarly 

to the previous section, for the sake of simplicity only the ND-related uncertainties for the 

application case are considered in this work. The adjusted 𝑘𝑎
𝑐𝑎𝑙∗

 and its uncertainty then can be 

obtained with the following equations [15]: 

𝑘𝑎
𝑐𝑎𝑙∗

= 𝑘𝑎
𝑐𝑎𝑙 + Σ𝑎𝑏𝑈−1∆𝑘𝑏𝑒𝑛𝑐ℎ ; (10) 

𝜎
(𝑘𝑎

𝑐𝑎𝑙∗
)

= 𝜎
(𝑘𝑎

𝑐𝑎𝑙 )
− Σ𝑎𝑏𝑈−1Σ𝑎𝑏

𝑇 , (11) 
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where ∆𝑘𝑖
𝑏𝑒𝑛𝑐ℎ = (𝑘𝑖

𝑏𝑒𝑛𝑐ℎ − 𝑘𝑖
𝑐𝑎𝑙) and Σ𝑎𝑏 represents the vector of the covariances between an 

application case and the validation benchmarks. Matrix U contains the covariances between the 

validation benchmark 𝑘𝑖
𝑐𝑎𝑙 values, which consist of the two parts: one related to the nuclear 

data covariances and another related to the covariances due to the benchmark specifications: 

𝑈 = 𝑈𝑁𝐷 + 𝑈𝑏𝑒𝑛𝑐ℎ;   𝑈𝑖,𝑗
𝑁𝐷 = 𝜌𝑖,𝑗

𝑁𝐷𝜎𝑖
𝑁𝐷𝜎𝑗

𝑁𝐷;   𝑈𝑖,𝑗
𝑏𝑒𝑛𝑐ℎ = 𝜌𝑖,𝑗

𝑏𝑒𝑛𝑐ℎ𝜎𝑖
𝑏𝑒𝑛𝑐ℎ𝜎𝑗

𝑏𝑒𝑛𝑐ℎ  (12) 

It should be noted that the 𝑈𝑖,𝑗
𝑏𝑒𝑛𝑐ℎ correlations between ICSBEP benchmark cases are not 

quantified yet in the ICSBEP handbook and associated DICE database. However, it is obvious 

that certain correlations shall exist in the calculated 𝑘𝑖
𝑐𝑎𝑙 results because many measurements 

were made at the same facilities, with the same fuel rods and/or using the same instrumentation, 

etc. For example, in OECD/NEA/NSC/WPNCS SG11 analytical exercise, the test calculations 

were requested for several assumptions on the correlation coefficients due to benchmark 

uncertainties: equal to 0, 0.7 and 0.99 [10]. In the given study the same values were tested with 

BM (10),(11), and the results are discussed in section 4. 

2.3 Simplified Comparison of the PSI Reference Approach and the Bayesian Solution 

It is important to stress that even though the pseudo application cases considered in this work 

are the canister models with UNF, the approach described in Section 2.1 is the reference PSI 

methodology for fresh LWR fuel. CSE for burned fuel requires consideration of additional 

effects and uncertainties (see for details [11]), which, however, are not considered in this work. 

The focus of this study is to compare the considered methodologies with similar assumptions 

and inclusion into consideration of the burnup related effects would shift the focus to fuel 

depletion calculations which goes beyond the scope of this paper.  

To facilitate comparison of the different methods, it is convenient to rewrite (1) in the following 

form with modified USL’ option, which becomes application-case specific: 

𝑘𝑎
𝑐𝑎𝑙 < USL′ = 𝑘𝑁𝑜𝑟𝑚𝑎𝑙

𝐿𝑇𝐵 − 2𝜎
(𝑘𝑁𝑜𝑟𝑚𝑎𝑙

𝐿𝑇𝐵 −𝑘𝑎
𝑐𝑎𝑙)

𝑁𝐷 − Δ𝑘𝐴𝑀.  (13) 

Thus, Eq. (13) corresponds to a modified representation of the PSI reference approach based 

on 𝑘𝑁𝑜𝑟𝑚𝑎𝑙
𝐿𝑇𝐵 .  In certain cases, the non-parametric LTB can be used for verification purposes as 

discussed in [12] and then the criteria can be expressed as: 

𝑘𝑎
𝑐𝑎𝑙 < USL′′ = 𝑘𝑁𝑃

𝐿𝑇𝐵 − 2√𝜎
(𝑘𝑁𝑃

𝐿𝑇𝐵−𝑘𝑎
𝑐𝑎𝑙)

𝑁𝐷 2
+𝜎𝑙

2 − Δ𝑘𝐴𝑀.  (14) 

In (14), the benchmark specification uncertainty corresponding to the benchmark “l” in (7) 

should be taken into account and it is assumed to be uncorrelated with the nuclear data 

uncertainty. 

In case of the Bayesian solution, an analogous NCS criterion can be considered: 

𝑘𝑎
𝑐𝑎𝑙∗

+ 2𝜎
(𝑘𝑎

𝑐𝑎𝑙∗
)
< 1 − Δ𝑘𝐴𝑀, (15) 

or, equivalently, based on (10): 

𝑘𝑎
𝑐𝑎𝑙< USL′′′ = 1 − Σ𝑎𝑏𝑈−1∆𝑘𝑖

𝑏𝑒𝑛𝑐ℎ − 2 (𝜎
(𝑘𝑎

𝑐𝑎𝑙 )
− Σ𝑎𝑏𝑈−1Σ𝑎𝑏

𝑇 ) − Δ𝑘𝐴𝑀. (16) 
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Note that Eq. (10) provides that if the term Σ𝑎𝑏𝑈−1∆𝑘𝑏𝑒𝑛𝑐ℎ is negative, then the posterior 𝑘𝑎
𝑐𝑎𝑙∗

 

is reduced compared to the calculated 𝑘𝑎
𝑐𝑎𝑙. Equivalently, in (16) it means that the USL′′′ value 

will be increased. That goes in the less penalizing direction and in the practice of NCS such 

corrections may not be acceptable [16]. For instance, the American National Standard [17] 

recommends that in such situations the reasons of the “non-conservative” 𝑘𝑎
𝑐𝑎𝑙 adjustments shall 

be understood in order to be applied.  

In fact, the sign of the term Σ𝑎𝑏𝑈−1∆𝑘𝑏𝑒𝑛𝑐ℎ is defined by both the signs of individual ∆𝑘𝑖
𝑏𝑒𝑛𝑐ℎ 

biases as well as by the inverse matrix 𝑈−1 components’ signs. This actually makes it 

complicated to justify the sign of the 𝑘𝑎
𝑐𝑎𝑙 adjustment based on BM, with simple considerations. 

For that reason, in the following both cases of acceptance and non-acceptance of a negative 

Σ𝑎𝑏𝑈−1∆𝑘𝑏𝑒𝑛𝑐ℎ term will be considered. In the latter case, Eq. (16) will be replaced by Eq. 

(17): 

𝑘𝑎
𝑐𝑎𝑙< USL′′′′ = 1 − 2 (𝜎

(𝑘𝑎
𝑐𝑎𝑙 )

− Σ𝑎𝑏𝑈−1Σ𝑎𝑏
𝑇 ) − Δ𝑘𝐴𝑀.   (17) 

Thus, Eqs. (13),(14) and (16),(17) will be used respectively for the comparison of the frequentist 

and Bayesian based statistics methods presented in Section 4.  

3. VERIFICATION STUDIES 

3.1 Verification of the PSI NUSS Methodology  

Prior to discussing the comparison of the presented above methodologies, it makes sense to 

outline the verification studies which assist justification of the obtained results. Numerous 

verifications of the NUSS tool were done in the past [18],[19],[20],[21]. Recently, additional 

verification was realised using the models considered in this work by comparison with Whisper 

[22] calculations. The well-known in the field Whisper tool of LANL, working in conjunction 

with MCNP6® code (see https://mcnp.lanl.gov for details on the MCNP® software trademark), 

was considered as an appropriate option for verification of the PSI NUSS results, also 

employing the MCNP6 code for the criticality calculations. However, Whisper uses its own 

covariance data library (based on the “BLO” library) [22]. For that reason, a direct quantitative 

comparison was not possible. Nevertheless, a qualitative comparison with the NUSS results 

could be done, as illustrated below. In both, Whisper and NUSS calculations, the same 

ENDF/B-VII.1 NDL was used for the neutron transport calculations. The 44-groups energy 

structure was used with NUSS, similar to a recent study done at PSI [4]. Figure 1 shows the 

lower triangular part of the correlation matrix for the ICSBEP benchmark cases from the PSI 

validation suit and the disposal canister models loaded with a PWR UNF with different burnups 

and initial 235U enrichment about 5 wt%. In the following, the labels “Can-0 ÷ Can-72” 

correspond to the burnups from 0 to 72 GWd/tHM. The selected burnup values are close to the 

end of cycle burnups for the ~5wt% enriched fuel irradiated in a Swiss PWR. The burned fuel 

composition included the major and minor actinides (MA) and fission products (FP), in line 

with [11],[23]. Cases ‘LCT’ and ‘MCT’ are used for illustration and correspond to the UO2 and 

MOX ICSBEP benchmarks respectively. The ICSBEP experimental benchmarks with fresh 

UO2 are marked as ENNcMM and with MOX fuel as ENNmMM cases in Figure 1. 

https://mcnp.lanl.gov/
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Figure 1: ND-related correlation matrices obtained with NUSS (left) and  

Whisper (right) for the selected test cases and validation benchmarks. 

In the NUSS case, 300 sets of randomly sampled ACE data files were used in addition to the 

reference NDL. It should be noted that in the NUSS calculations the total NUBAR values (MT-

452 in ENDF-6 format) were selected for this study (resulting in more penalizing assessments), 

although this choice can be questionable [18] and in another similar calculations it was decided 

to use only the prompt NUBAR values (MT-456)[3]. It should also be mentioned that in the 

previous works [23],[24] NUBAR and CHI data were not perturbed, while this is the case in 

the given study and also in [4]. Furthermore, following some preliminary sensitivity and 

optimisation studies, the target Monte Carlo precision for the MCNP6 calculations with random 

ACE files was chosen 50 pcm, as reported in [7] (note that more precise MCNP calculations 

with ENDF/B-VII.1 were reported in [12]). Even though the NUSS and Whisper results show 

noticeable differences, qualitatively they look rather similar and this justifies that both 

methodologies provide reasonably consistent results (noting that the differences clearly should 

be attributed to the different sources of the ND covariance data). Figure 2 represents a zoomed 

view of the part of the correlation matrix of Figure 1 as concerns the canister models pseudo-

application cases, together with a few representative ICSBEP benchmarks. The case E51c16 

provides the value in the C/E sample corresponding to the order statistics 95%/95% 𝑘𝑁𝑃
𝐿𝑇𝐵. 

   

Figure 2: ND-related correlation matrices obtained with NUSS (left) and  

Whisper (right) for the selected test cases and representative benchmarks. 
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As it should be expected, with the increase of the burnup the correlations between the canister 

models and the UO2 benchmarks are decreasing, while the situation is opposite for MOX fuel. 

3.2 Verification of the Bayesian Methodology Realisation 

The OECD/NEA/NSC/WPNCS SG11 exercise “Bias and correlated Data, Comparison of 

Methods” was proposed in 2021 for comparison between methodologies to compute 𝑘eff 

predictions based on given covariance information for the experiments taken into account in 

the validation procedure [10]. This exercise allowed participants to verify their calculation 

procedures and tools which could be of relevance to CSE, although not necessary fully 

consistent with the participants’ reference methodologies for practical applications. In 

particular, PSI submitted two types of solutions for the SG11 exercise, though not fully in line 

with the reference PSI CSE methodology described in Section 2.1. 

Figure 3 illustrates the PSI solutions submitted for the SG11 comparative study. The PSI 

‘MOCABA’ solutions were perfectly matching analogous Bayesian-based solutions and in 

particular the MOCABA ones provided by other participants [10]. This benchmarking 

experience confirms that the realisation of the MOCABA methodology, as well as the Bayesian 

deterministic method employed by PSI (in comparison with the Monte Carlo based MOCABA 

procedure) [15], corresponding to Eqs. (10),(11) in this study, was done correctly.  

  

Figure 3: PSI solutions for the WPNCS SG11 benchmark. 

The solution marked as “Weighted Mean” [10] was obtained with a modified version of Eq. (4) 

with inclusion of the full covariance matrices in the mean value derivation instead of only the 

variances as shown with Eqs. (4),(5). This solution is also called “Covariance Weighted Mean” 

(CWM) in [7]. Details of that solution go beyond the scope of this paper and will be presented 

in the WPNCS SG11 final report under preparation. Nevertheless, it is relevant to notice from 

the PSI results that when only the validation benchmarks with high correlations with an 

application case are selected and the benchmark uncertainties are low (cases 10-18 in Figure 

3), then the “Weighted Mean” solution is close to the Bayesian/MOCABA ones. This is not the 

case if low-correlated benchmarks are included into the CWM solution (cases 19-33), while in 

the case of Bayesian/MOCABA the low-correlated benchmarks play no role and the solution is 

driven almost solely by the higher correlated cases (case 1 in Figure 3 is based on the single 

most correlated benchmark). In general, this observation means that the PSI reference solution 

described in Section 2.1 tends to agree better with the Bayesian based solution if only 

benchmarks highly correlated to an application case are selected for C/E analysis (in other 

words, if a cut-off value for the correlation coefficient would be applied). This observation is 

fully in line with the conventional practice to select validation benchmarks close by their 

physical characteristics to an application case. 
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4. CALCULATION RESULTS 

The relevant calculation results to be presented here for the following discussion are at first the 

calculation biases for the benchmark cases, ∆𝑘𝑖
𝑏𝑒𝑛𝑐ℎ from Eq. (10), illustrated in Figure 4. It 

should be recalled that for the present study with the “costly” ND uncertainties quantifications, 

a reduced MC precision was used and for that reason the obtained results are not exactly the 

same as reported in the previous works, e.g. [12]. Just for the sake of better illustration of the 

validation results, it can be noted that a simple average of the absolute bias ∆𝑘𝑖
𝑏𝑒𝑛𝑐ℎ used in the 

Bayesian model framework is very close to zero and equals to +1.5pcm. 

 
Figure 4: Absolute calculation biases obtained for the PSI CSE validation suit. 

Additional important results obtained with the NUSS tool in conjunction with MCNP6 are the 

ND-related uncertainties, e.g. 𝜎
𝑘𝑎

𝑐𝑎𝑙
𝑁𝐷  for the application case and the vector of the Pearson 

correlation coefficients r between the here considered pseudo application cases and the 

validation benchmarks, as illustrated in Figure 5.  

 
Figure 5: ND-related uncertainties for the application cases (left) and correlations 

between the application cases and the validation benchmarks (right). 

It should be highlighted that the number of NUSS samples (300) and the selected target MC 

precision (50pcm) lay on rather low sides regarding the statistical convergence of the results. 

In fact, the standard errors of the Pearson correlation coefficients (see, e.g. [14]) lay in the range 

from 0.3% to 5.2% for the correlation coefficients respectively in the range from 0.97 to 0.32 

shown in Figure 4. This may be considered as rather low statistical precision and should be 

improved in the future production calculations. 

The uncertainty results are obviously dependent on the used NDL and CM. In particular, for 

the selected case of ENDF/B-VII.1 NDL and CM and the use of the TOTNU CM, it happens 

that the ND-related uncertainties for the LCT cases (no plutonium in the fuel) are lager 

compared to the MCT cases (with plutonium in the fuel): ~930pcm vs. ~710pcm on average. 
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Similarly, one can see in Figure 5 that the ND-related uncertainties are decreasing with burnup 

(i.e. with decrease of U-235 content and increase of plutonium isotopes content). Naturally, 

using other sources of CM may lead to different results and trends. 

One can notice that the correlation results in general make logical sense: the fresh fuel keff  

values are highly correlated with the UO2 (LCT) benchmarks’ keff values (cases 1-122) while 

the correlations with the MOX (MCT) benchmarks (cases 123-149) are low. With increasing 

burnup, the correlations with UO2 benchmarks are decreasing, while the correlations with the 

MOX benchmarks are increasing. It is also obvious that there are no highly correlated 

benchmarks for burned fuel. That means that relatively large portions of the keff calculation 

uncertainties (can be estimated as 1-r2) are not shared between the fresh fuel benchmarks and 

burned fuel application cases. However, it should be mentioned that the use of the 

“administrative margin” Δ𝑘𝐴𝑀, typically equal to 0.05, should reliably cover such sort of 

validation deficiencies. 

Using the obtained results and Eq. (13),(14) and (16),(17) the “modified versions of USL” 

values can be calculated deterministically for the three considered methods. As was discussed 

in Section 2.2, the BM equations require knowledge of correlations between 𝑘𝑖
𝑐𝑎𝑙  due to the 

benchmark model specifications. For the present illustration, the correlation value of 0.7 was 

arbitrary selected. The respectively obtained results are shown in Figure 6. It is important to 

note that the considered values are not exactly the USL values as defined by (1), but they are 

modified and fictitious versions used here only to facilitate the comparison between the 

different methods. 

 

Figure 6: Comparison of the frequentist and the Bayesian –based methodologies 

performance. 

It is further necessary to note that the values of Σ𝑎𝑏𝑈−1∆𝑘𝑏𝑒𝑛𝑐ℎ discussed in Section 2.3 

appeared to be negative for all burnups, meaning that positive adjustments of the USL’’’ values 

take place according to the BM equations. It looks counterintuitive that the USL’’’ values grow 

with burnup, despite the fact the correlations between the application cases and the benchmarks 

in general become lower with increase of the burnup, as was shown in Figure 5.  

There is a competing effect from the reduction of the application case ND-related uncertainties 

shown in Figure 4. However, this effect alone does not explain either the negative sign for 

Σ𝑎𝑏𝑈−1∆𝑘𝑏𝑒𝑛𝑐ℎ obtained in this work, or the trend with increase of burnup. 
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It shall be recalled here that an implausible influence of the ND-related CM was observed in 

[7] in derivation of the weighted mean similarly to Eq. (4), but using the full CM instead of 

only the variance terms. In the present work, exactly the same matrix was used and the results 

obtained with the Bayesian model using the ND-related CM for 𝑘𝑎
𝑐𝑎𝑙 adjustment noticeably 

differ from the frequentist statistics results. Therefore, to verify if the present BM model results 

may be as well affected by somewhat problematic CM obtained specifically with the employed 

NDL and CM data (as was discussed in [7]), it is recommended to repeat in the future the 

present study with alternative sources of ND, e.g. using ENDF/B-VIII or JEFF-3.3.  

Ignoring the positive 𝑘𝑎
𝑐𝑎𝑙 adjustment with the Σ𝑎𝑏𝑈−1∆𝑘𝑏𝑒𝑛𝑐ℎ term when it is negative, i.e. 

using Eq. (17) instead of (16), leads to slightly more penalising USL’’’’ values which do not 

show anymore the counterintuitive growth with burnup. Nonetheless, the BM results even 

without the positive adjustment are still much less penalising comparing to the frequentist 

statistics results, meaning that the BM results would be more beneficial considering the 

economics metrics alone.  

The distribution-free or non-parametric LTB method provides slightly more conservative 

results than the Gaussian-based LTB method for fresh fuel, in line with usual expectations and 

the previous studies [12]. However, with burnup the difference between the two methods is 

decreasing and the Gaussian-based LTB method becomes even more penalising in comparison 

with the non-parametric LTB method. The fictitious USL values become more penalising with 

burnup for both cases of Gaussian-based LTB method and the Bayesian model method without 

the positive adjustment. This is related to the Pearson correlation coefficient between the 

application cases and the fresh fuel validation benchmarks, which is decreasing with growing 

burnup of the application case models. 

As for the assumption on the benchmark keff correlations, the previously shown BM results 

without the positive adjustment, obtained for the medium correlations equal to 0.7, were 

compared with two other options used in the SG11 study: no correlations and strong correlations 

equal to 0.99. The results are shown in Figure 7. 

 
Figure 7: Influence of the benchmark keff  correlations due to the benchmark 

models/specifications on the Bayesian model results. 

One should acknowledge that certain fluctuations of the illustrated results may be related to the 

low statistical precision of the performed calculations, as was notified above. Nevertheless, 

Figure 7 indicates that the initially selected value of the benchmarks correlations of 0.7 seem to 

produce the most penalising results and thus will remain as the reference case for the BM 

methodology presented here. 

For practical BUC for UNF handling, storage, transportation and disposal, it is relevant to 

translate the differences in the fictitious criticality safety criteria shown in Figure 6 into the 

difference in required burnup to guarantee sub-criticality.  
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Such estimation is illustrated in Figure 8, where the two most relevant versions of USL are 

shown together with the representative UNF canister model keff behaviour as function of the 

fuel burnup. In this illustration, the same results as presented in [5] were used; the burnup of 

5wt% initially enriched PWR fuel was simulated with a pin cell model, the fuel composition 

was translated into a canister model and criticality calculations were performed as function of 

burnup. All relevant details can be found in [5][6]. 

 

Figure 8: Illustration on the impact of the fictitious USLs’ difference for the BUC 

application. 

One can see that the BM approach can lead to some relaxation of the burnup requirement for 

the UNF criticality safety, namely by ~2.5MWd/kg for the considered case of the 5wt% initially 

enriched PWR fuel (when using the simplified fuel depletion modelling of [5]). 

5. CONCLUSIONS 

This work presents a comparison of two intrinsically different options for BUC applications. 

One is based on the frequentist statistics concept of tolerance bounds and another is based on 

the Bayesian framework. Both of them have their own advantages and disadvantages. For 

instance, the frequentist statistics approach utilised in this work does not provide a capability 

(so far) to include the information about similarity of the validation benchmarks and application 

cases in the LTB values. All benchmarks are considered equally well representing an 

application case. Only the ND-related uncertainty component depends on the correlations 

between the application case and validation benchmarks’ keff values.  

The Bayesian model results were found noticeably less penalizing in terms of the considered 

“fictitious” criticality safety criteria, which, for instance, can result in some practically relevant 

relaxation of the requirements to the UNF disposal canister designs and/or the UNF loading 

specifications (i.e. the ‘loading curves’ [11]). On the other side, the Bayesian model is very 

sensitive to the C/E results of the benchmarks with highest correlations with an application 

case, as was for instance illustrated with the SG11 exercise [10]. This potentially can lead to 

wrong keff adjustments if the single most important benchmark specifications (i.e. the 

experimental value “E”) or calculation results (“C”) are not correct. The most important 

observation, however, was the counterintuitive behaviour of the safety margins which become 

less penalising with increasing burnout, although no benchmarks with used nuclear fuel are 

available in the employed validation suite. Such performance of the utilised methods should be 

further verified, preferably using different application systems and validation databases. 
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Nevertheless, in general, the results obtained in this work confirm that both considered 

methodologies agree reasonably well in terms of the foreseen NCS criteria realisation and the 

resulting differences in the burnup requirements to guarantee criticality safety are not very 

large, even if noticeable. Further verification of the obtained findings should be also done with 

more realistic depletion calculations and improved statistics. As well, latest NDLs and related 

CMs should be tested. Actually, the present work goes in line with the PSI contribution to the 

OECD/NEA/NSC/WPNCS SG13 exercise [6], which was designed to foster a consistent 

comparison of different methodologies using the simplified pseudo-application case with PWR 

burned fuel. Thus, additional relevant results will be presented in the SG13 final report. 
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