




# SAREC SUBTASK 6.2 - SOURCE TERM AND FGR MODELLING

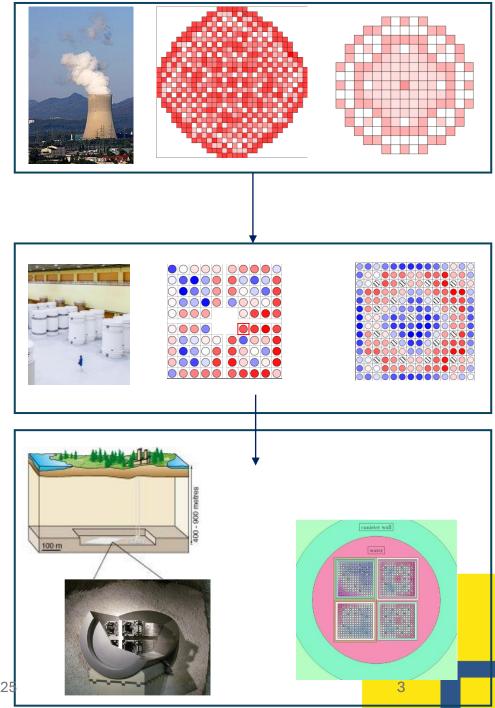
# DIMITRI ROCHMAN, PSI



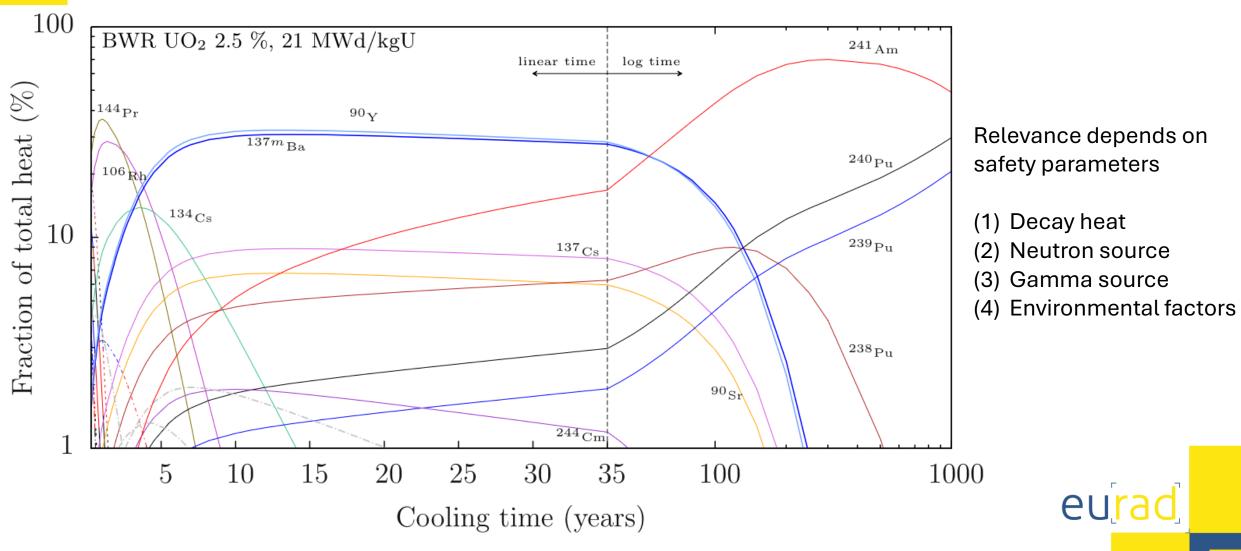
Co-funded by the European Union under Grant Agreement n° 101166718 The research and publication are as funded by Swize State Secretoriet for Education

The research and publication are co-funded by Swiss State Secretariat for Education, Research and Innovation Grants n° 24.00421.

2025-03-07


SAREC Task 6 meeting, online, March 7, 2025

# Contribution from PSI to subtask 6.2


- Source term (radionuclide inventory) calculations will be performed for UO2 and MOX supporting the evaluation of IRF and matrix dissolution studies
- Neutronic calculations and source term estimations for
  - Cooling time from the end of irradiation up to million years
  - UO<sub>2</sub> and MOX fuel types from PWR and BWR
  - Different burnup and initial enrichments with uncertainties for selected cases
  - If useful: provide other quantities such as decay heat or radiotoxicity

## WHY, what?

- We are dealing with <u>nuclear materials:</u> Spent Nuclear Fuel
- 1<sup>st</sup> main question: What is in the spent Fuel?
- Safety first for transport, storage, and long-term repository
  - Over 100 000s years
  - Criticality-safety, dose, decay heat
  - Risk, uncertainties, consequences
- All SFC start from the knowledge of source terms: nuclide concentrations
  - Knowledge: experimental or theoretical
  - Includes safeguard needs
- 2<sup>nd</sup> main question: What is the required degree of knowledge ?
  - 5%, 10%, 50%?
- Need for measurements, calculations, uncertainties & validations, prior to any other studies



### Which nuclides constitute the spent fuel?



How well do we know the nuclide composition?

- Nuclide vector at end of irradiation is usually determined with reactor simulation tools like CASMO/SIMULATE, SCALE, etc,
- These "tools" are based on experimental data: cross sections, fission yields, decay constants.
- Two types of validation:
  - Integral test: measurements of decay heat, neutron and gamma dose
  - Single effects tests: PIE measurements of nuclide concentrations
- In the time window which allows the observation of source terms, codes can be finetuned to match observations. This is not possible for the large time frames for long term storage



### Experience from EURAD (-1)

- The proposed work builds on
  - Experience from EURAD-1 (WP8)
  - PSI full core models for Swiss plants
  - Extensive validation with measurements

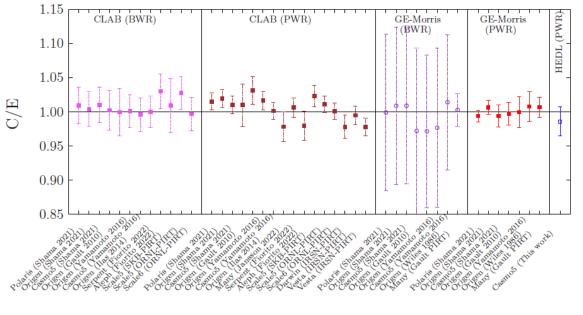



Fig. 7. Plots of the average C/E values for the decay heat from various references.



Dimitri Alexandre Rochman<sup>1,\*</sup>, Francisco Álvarez-Velarde<sup>2</sup>, Ron Dagan<sup>3</sup>, Luca Fiorito<sup>4</sup>, Silja Häkkinen<sup>5</sup>, Marjan Kromar<sup>6</sup>, Ana Muñoz<sup>7</sup>, Sonia Panizo-Prieto<sup>2</sup>, Pablo Romojaro<sup>4</sup>, Peter Schillebeeckx<sup>9</sup>, Marcus Seidl<sup>8</sup>, Ahmed Shama<sup>10</sup>, and Gasper Žerovnik<sup>6</sup>

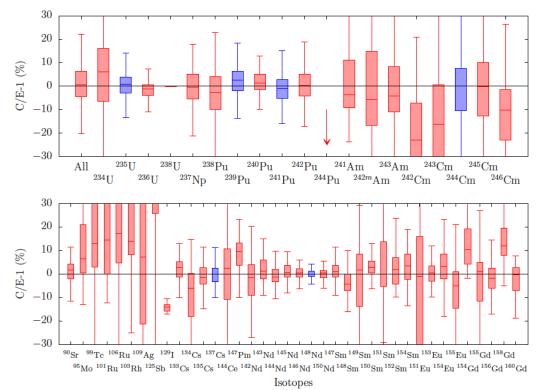



Fig. 4. Interquartile ranges for the C/E - 1 isotopic concentrations, considering a total of more than 12 000 measured concentrations. The blue color is given to important isotopes. See Tables 3 and 4 for numerical values.

#### Proposed quantities

- Nuclide vector (actinides and fission products of interest), e.g. U-235, Pu-239, Cs-137, in g/tHM
- Evolution as a function of cooling time: e.g. from 1 year to 10<sup>6</sup> years
- Different types of fuel (UO<sub>2</sub>, MOX): to be defined within the subtask
- Different types of reactors: PWR or BWR: to be defined within the subtask
- Different burnup values: to be defined within the subtask
- Other quantities ?