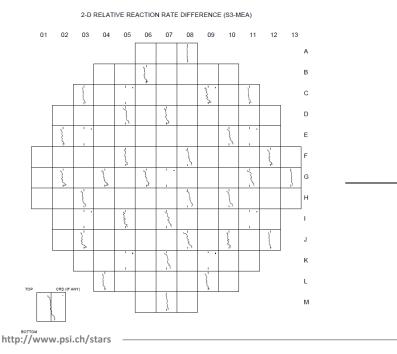
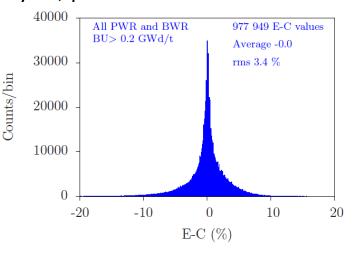
PAUL SCHERRER INSTITUT

D. Rochman


Examples of assembly burnup derived from in-core measurements

Ad-hoc meeting on burnup, WPNCS, NEA Paris, June 28, 2023

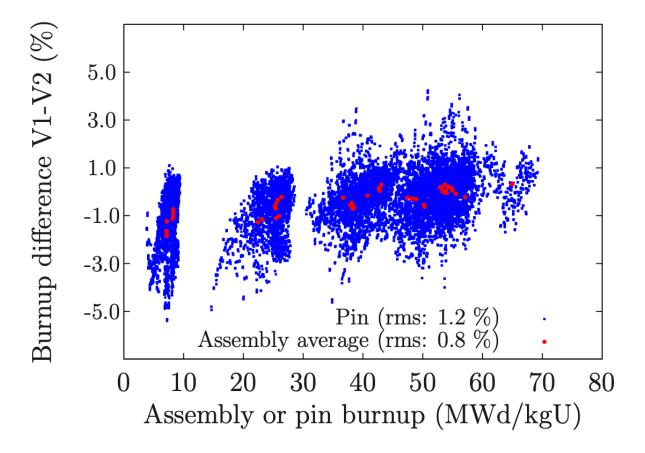


- Assembly burnup is a key calculated quantity for Spent Fuel Characterization
- It is not measured
- It impacts criticality-safety, decay heat, nuclide concentrations, safeguard quantities
- It can be derived from reactor in-core reaction rate measurements
- Measured reaction rates in 3D —— derived node reactivity, power, burnup
- What are the biases and uncertainties on these burnup values ?

Bias: E – C with rms per plant, cycle, position...

2023.06.28/STARS/RD41 - (2 / 9)

- Derived assembly burnup depends on
 - Core simulator
 - Measurement (e.g. ²³⁵U(n,f) fission chamber, ⁵¹V activation)
 - Conversion factors (rates to burnup)
 - Human errors


- Different methods can be used to derive biases and uncertainties on burnup
 - 1. Changing simulator (or version)
 - 2. Adjust assembly burnup to lower biases for follow-up calculations
 - 3. Adjust design calculation with online core power tracking
 - 4. Compare offline C and E reaction rates
 - 5. Correct known human errors
 - 6. Classical uncertainty propagation

1. Changing simulator version

- See example in the SG12 report (Fig. 6)
- Using two different versions of the same core simulator

2. Adjust assembly burnup to lower E-C

 Change assembly burnup batch to improve E-C (Measured – Calculated reaction rates), unpublished (yet)

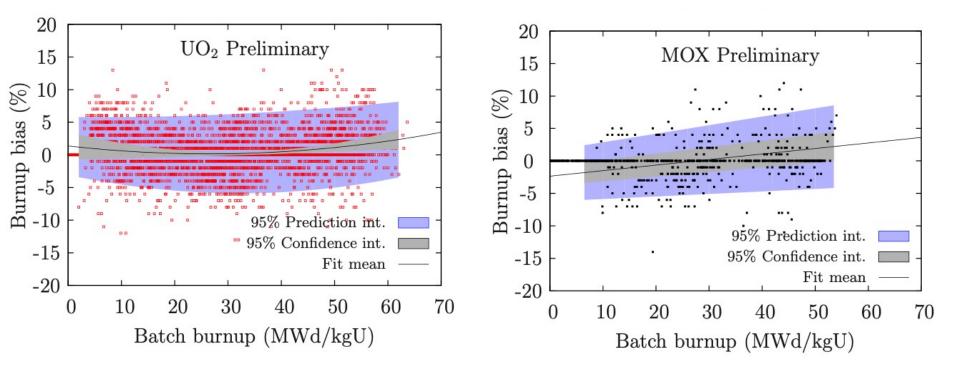
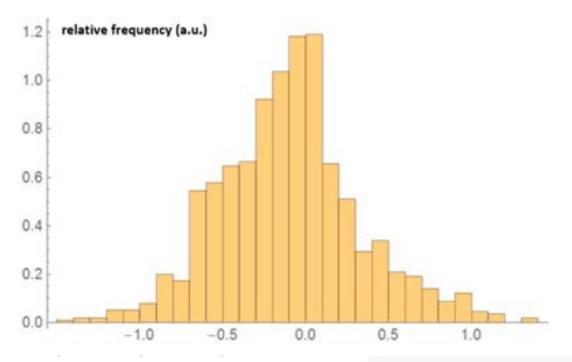
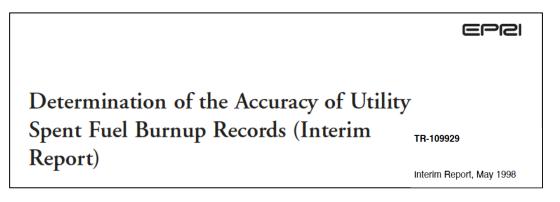



 Figure 1 shows the difference between the theoretically determined fuel assembly burnup from core design calculations and the burnup determined from online core power tracking of several hundred fuel assemblies of a German Konvoi plant... one standard deviation of 1%.

BRIEF RESEARCH REPORT article

Front. Energy Res., 05 April 2023 Sec. Nuclear Energy Volume 11 - 2023 | https://doi.org/10.3389/fenrg.2023.1143312


Marcus Seidl¹*, Peter Schillebeeckx² and Dimitri Rochman³

This article is part of the Research Topic Computational Modelling for Spent Fuel Characterisation View all 8 Articles >

Note on the potential to increase the accuracy of source term calculations for spent nuclear fuel

• <u>Case 1</u>: EPRI study

For assemblies discharged after one cycle of burnup, the uncertainty is 1.90%, after two cycles of burnup, the uncertainty is 0.97% and after three cycle of burnup is 1.02%. This decrease in uncertainty after two cycles of burnup is indicative of the self-correcting nature of burnup.

• <u>Case 2</u>: unpublished study on reaction rates

Case	(E-C) rms (%)	(E-C) STD (%)
all LWR	2.9	2.9
BWR1	0.9	0.9
BWR2	0.9	0.9
PWR1/2	2.6	2.6
PWR3	4.8	4.7

Root mean squares (rms) and standard deviations (STD) for the studied cases

• Incorrect assembly segment was used from cycle 7 to 11.

Root mean squares (rms) for PWR1, cycle 5 to 16. One MOX segment was discovered uncorrect in cycle 7 to 11.

	Correct assemblies segments	Incorrect MOX segment	
Cycle	rms	rms	rms(Correct)/rms(Incorrect)
05	5.13	5.13	1.00
06	3.26	3.26	1.00
07	3.26	3.61	0.90
08	3.14	3.59	0.87
09	3.10	3.44	0.90
10	3.18	3.68	0.86
11	2.75	2.82	0.97
12	3.26	3.37	0.97
13	3.69	3.87	0.95
14	3.50	3.50	1.00
15	2.97	2.97	1.00
16	2.82	2.82	1.00

• In this case, wrong segment assignments lead to non-negligible differences in BU.

- Assembly and nodal burnup values are often (or always) provided by core simulators
- These simulators are also prone to biases (and uncertainties)
- In-core reaction rates can be used to estimate burnup biases
 - Results depends on methods, reactors, fuel types, core locations
 - Derived averaged biases on burnup are certainly > 1%
 - Local (node) biases are larger
- Uncertainties and biases from BU_{core simulator} impact the nuclide concentrations, decay heat, criticality studies.

Wir schaffen Wissen – heute für morgen

