PAUL SCHERRER INSTITUT

D. Rochman, H. Ferroukhi and A. Vasiliev

Combining ML and reactor physics for characterization and safety analysis of Used Nuclear Fuel

ETSON AI workshop, PSI, 20-21 October 2022

- Background and goal
- ML for understanding decay heat biases
 - Weighted k-Nearest Neighbors
 - Random Forest
- ML for simulating canister criticality – Neural Network
- ML for optimizing canister loadings - Genetic Algorithm
- ML for criticality uncertainty due to nuclear data
 - Lasso Monte Carlo
- ML for nuclear data and nuclear data uncertainties - Bayesian Monte Carlo

Background and goal

- Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', (*i.e.* methods that leverage data to improve performance on some set of tasks).
- ML is used here in applied physics to complement Human Learning (HL).
- Based on "*command and control*": needs automation, integration (one-stop shop) and code control, from cradle to grave.
- Very computer intensive.

- Goals pursued in this work:
 - Supplement measured data
 - Perform optimization
 - Reduce biases
 - Estimate uncertainties (uncertainty is in the air)

ML for understanding decay heat bias (1/2)

- Work performed between PSI, Nagra & EPFL (A. Shama)
- Goal: Reduce the decay heat bias for B = C E
- Why: Safety and economy of disposal canisters

 $B_{(\rho=1)} = \sum_{n=1}^{N} w_n B_n$, $I_{\rho > co}$

- Methods:
- Weighted k-Nearest Neighbors WkNN $B_{(\rho=1)} = \sum_{k=1}^{K} w_k B_k$, $w_k \propto f(\rho)$

Random Forest RF

ML for understanding decay heat bias (2/2)

- Outcome:
 - Decay heat bias explained (reduced) by \simeq 50 %
 - Finding of outliers

 Finding of "where new measurements should be performed" to efficiently improve our knowledge

http://www.psi.ch/stars

ML for simulating canister criticality (1/2)

- Work performed between PSI, EPFL & Uppsala University (V. Solans)
- Goal: optimize canister loading while minimizing criticality
- Why: Safety and economy of disposal canisters

- Methods:
 - Considering orientations and assemblies: "enormous" filling possibilities
 - Replace Monte Carlo transport (very long) with a surrogate model
 - Realistic assembly filling
 - Train a neural network

ML for simulating canister criticality (2/2)

- Outcome:
 - minimization of canister k_{eff}
 - maximize homogeneity,
 - and finally minimize canister number

ML for canister loading optimization (1/2)

- Work performed between PSI, Nagra, EPFL & Uppsala University (V. Solans)
- Goal: optimize canister loading while minimizing decay heat
- Why: Safety and economy of disposal canisters

N	Possible arrangements (3D/2D)		
4	12 288 / 1 536		
8	10 ⁹ / 10 ⁷		
212	10 ⁴⁷⁶ / 10 ⁴²⁸		
12 000	1042738 / 1040029		
N: number of assemblies			

- Methods:
 - Considering 12 000 assemblies: "enormous" filling possibilities
 - Benchmark different codes
 - Use of genetic algorithm (GA)

- Outcome:
 - minimization of number of canister,
 - maximize decay heat homogeneity,
 - Benchmark different GA algorithms in different institutes (LAB-1 & LAB-2)

	Canisters			Duration
	Total	BWR	PWR	(days)
LAB-1	1873	867	1006	3375
LAB-2	1910	917	993	3486

ML for criticality uncertainty due to nuclear data (1/2)

- Work performed between PSI & ETH (A. Alba)
- Goal: obtain uncertainties on decay heat due to nuclear data
- Why: Safety and economy of disposal canisters

$$CASM05: \begin{pmatrix} Fresh \text{ fuel parameters} \\ Irradiation \text{ history} \\ Reactor parameters} \\ Nuclear Data \end{pmatrix} \rightarrow \begin{pmatrix} Decay \text{ Heat} \\ Isotopic Content \\ etc... \end{pmatrix}$$
$$Uncertain Input$$
$$: \mathbb{R}^{15557} \rightarrow \mathbb{R}$$
$$(nuclear data) \mapsto f(nuclear data) = Decay Heat$$

- Methods:
 - Realistic irradiation history
 - Deterministic calculations (CASMO5)
 - Use of Lasso Monte Carlo: Multi-level Monte Carlo + Lasso

http://www.psi.ch/stars -

• Outcome: Uncertainties obtained with a reduce calculation time by a factor 5

- Work performed between PSI, IAEA, CEA and Brussels Free University
- Goal: assess uncertainties on nuclear data (e.g. cross sections)
- Why: Nuclear data are used everywhere. They are not constants, they are uncertain
- Methods:
 - Neutron interaction modelling (TALYS)
 - Vary model parameters (TMC) and models
 - Use of Bayesian Monte Carlo

- Outcome:
 - uncertainty (or pdf) based on mathematically-sound approach
 - No Gaussian distributions
 - Automated (ML) library (TENDL) which complement JEFF and ENDF/B

- Extension to short-lived isotopes (for dosimetry, transients, decay heat, astrophysics...)

- "One of the things you learn as president is you're always dealing with probabilities" (Obama)
- Safer and more optimized nuclear environment: ML can help

- "One of the things you learn as president is you're always dealing with probabilities" (Obama)
- Safer and more optimized nuclear environment: ML can help

- "One of the things you learn as president is you're always dealing with probabilities" (Obama)
- Safer and more optimized nuclear environment: ML can help

- "One of the things you learn as president is you're always dealing with probabilities" (Obama)
- Safer and more optimized nuclear environment: ML can help

- "One of the things you learn as president is you're always dealing with probabilities" (Obama)
- Safer and more optimized nuclear environment: ML can help

• Decay heat bias:

[1] Validation of spent nuclear fuel decay heat calculations using Polaris, ORIGEN and CASMO5,

https://www.sciencedirect.com/science/article/pii/S0306454921006344

• Canister criticality

[2] Optimisation of used nuclear fuel canister loading using a neural network and genetic algorithm, <u>https://link.springer.com/article/10.1007/s00521-021-06258-2</u>

• Canister loading optimization

[3] Loading optimization for Swiss used nuclear fuel assemblies into final disposal canisters, <u>https://www.sciencedirect.com/science/article/pii/S0029549320303915</u>

• Criticality uncertainty

[4] Lasso Monte Carlo, a Novel Method for High Dimensional Uncertainty Quantification, A. Alba, <u>http://arxiv.org/abs/2210.03634</u>

• Nuclear data

- Many (authors: A. Koning, D. Rochman, S. Goriely, E. Alhassan...)

Wir schaffen Wissen – heute für morgen

