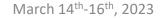
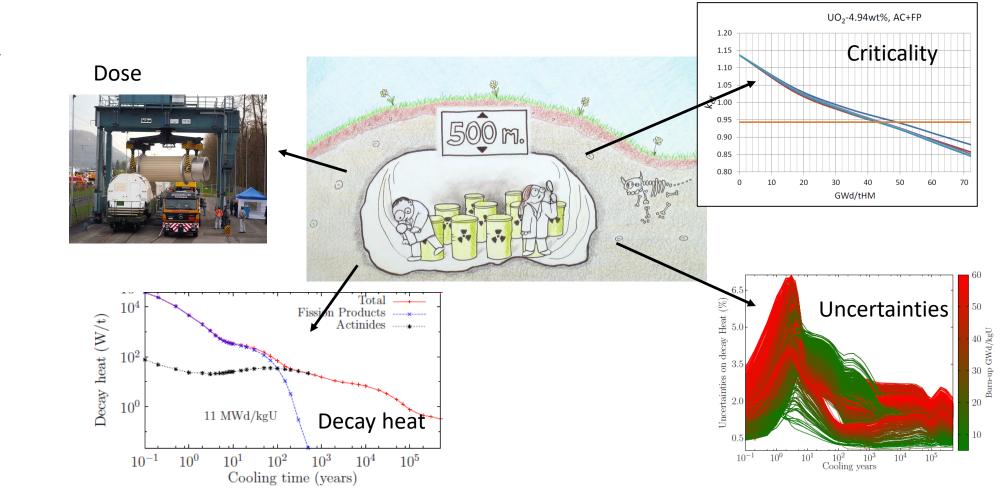


ON THE ESTIMATION OF NUCLIDE INVENTORY AND DECAY HEAT:


A review from the eurad WP8 SFC

March 16th, 2023 • D. Rochman on behalf of the WP8


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°847593

SUMMARY

- What, why ?
- Tasks in EURAD
- Achievements
- Future

WHY, WHAT ?

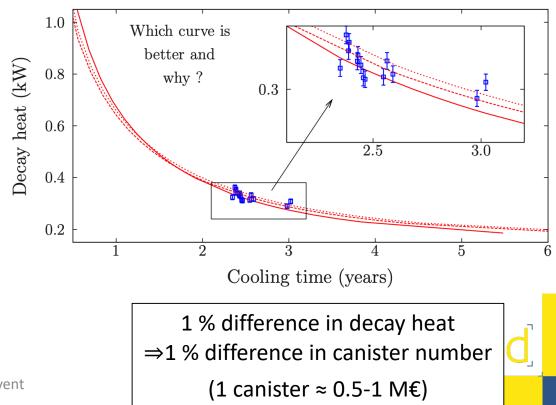
- We are dealing with <u>nuclear materials</u>: Spent Nuclear Fuel
- 1st main question: What is in the spent Fuel ?
- Safety first for transport, storage, and long-term repository
 - Over 100 000s years
 - Criticality-safety, dose, decay heat
 - Risk, uncertainties, consequences
- All SFC start from the knowledge of source terms: nuclide concentrations
 - Knowledge: experimental or theoretical
 - Includes safeguard needs
- 2nd main question: What is the required degree of knowledge ?
 - 5%,10%,50%?
- Need for measurements, calculations, uncertainties & validations, prior to any other studies

March 14th-16th, 2023

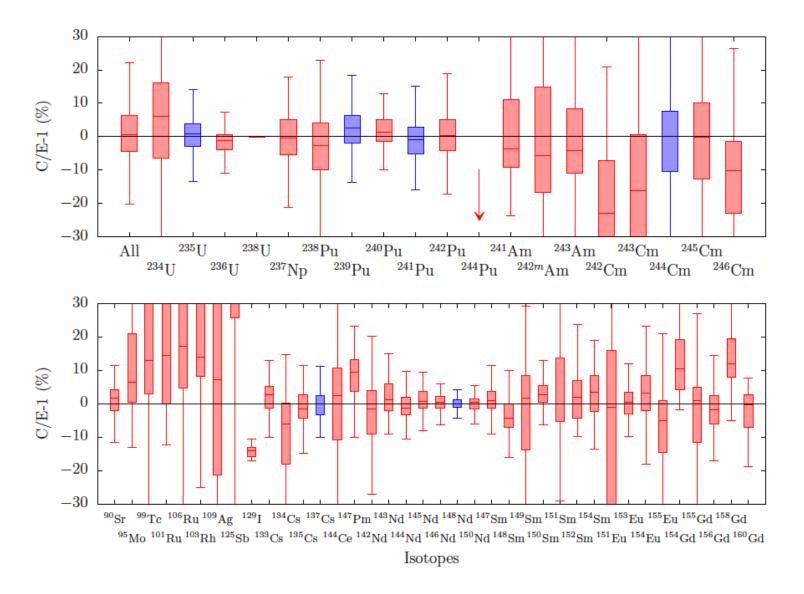
TASKS IN EURAD WP 8

- For representative SNF assemblies:
 - Calculate nuclide concentrations, decay heat, γ/n emission
 - Cooling up to 10⁵ years
 - Compare code predictions (and possible measurements), uncertainties
 - Identify relevant parameters, gaps
- Validations (C/E) for decay heat, nuclide concentrations
- PSI, JSI, SCK-CEN, JRC, KIT, Nagra, VTT, CIEMAT, ENRESA/ENUSA
- More than 10 peer reviewed publications
- Strong links with NEA WNCS, WPEC and IAEA (NDS and Nuclear Fuel)

EPJ Nuclear Sci. Technol. 9, 14 (2023) © D.A. Rochman et al., Published by EDP Sciences, 2023 https://doi.org/10.1051/epjn/2022055

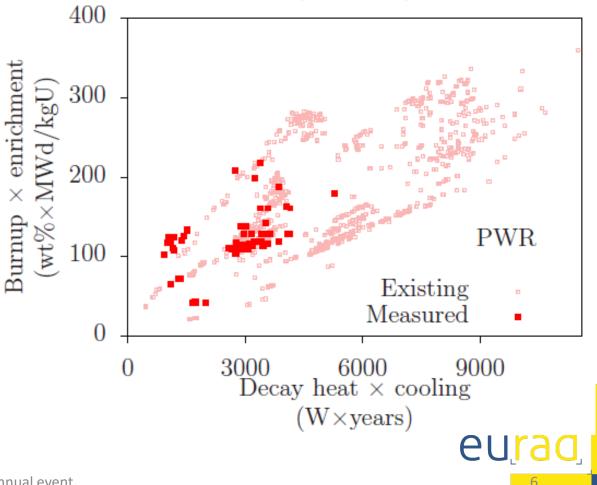

Available online at: https://www.epj-n.org

REGULAR ARTICLE


OPEN ∂ ACCESS

On the estimation of nuclide inventory and decay heat: a review from the EURAD European project

Dimitri Alexandre Rochman^{1,*}, Francisco Álvarez-Velarde², Ron Dagan³, Luca Fiorito⁴, Silja Häkkinen⁵, Marjan Kromar⁶, Ana Muñoz⁷, Sonia Panizo-Prieto², Pablo Romojaro⁴, Peter Schillebeeckx⁹, Marcus Seidl⁸, Ahmed Shama¹⁰, and Gasper Zerovnik⁶


ACHIEVEMENTS: NUCLIDE CONCENTRATIONS IN SNF

Marc Fig. 4. Interquartile ranges for the C/E - 1 isotopic concentrations, considering a total of more than 12 000 measured concentrations. The blue color is given to important isotopes. See Tables 3 and 4 for numerical values.

FUTURE: TOWARDS NEXT DEVELOPMENT

- Only a small part of the SNF characteristics were explored: mainly UO₂, 2-5 % enrichment, <60 MWd/kgU
- Nowadays in Europe:
 - high enrichment (HALEU),
 - high BU (>60 MWd/kgU),
 - long-cooling time,
 - ATF, VVER, MOX, CANDU
- Tomorrow in Europe:
 - SMR, GEN-III, GEN-IV
- 1 exp. facility worldwide for decay heat
- Knowledge management/transfer over many
 - generations/civilizations

CONCLUSION

- Spent Fuel Characterization is a must for any Nuclear Fuel activity
- WP8 has achieved tremendous results on SFC (UO₂, source terms, decay heat, validation, knowledge sharing, uncertainties, biases
- New challenges were discovered for the EU landscape:
 - Changes in the industry (high-"everything"), energy politics
 - New systems (ATF, various SMR designs, GEN-IV)
 - New "old fuel": MOX, VVER
 - Design and optimization of cask, canister, repository
- One unique measurement facility: Clab. Need for diversification
- Finally: any study on SNF over 1 million years must start with its characterization: (1) content and (2) criticality. Then can come the rest.