PAUL SCHERRER INSTITUT

D. Rochman and A. Koning

What to expect from microscopic calculations on k_{eff} ?

The project leading to this presentation has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n°847552 (SANDA)

JEFF Meeting, April 22-26, 2024, OECD NEA Paris JEFDOC-2324

Motivation & approach

- <u>Motivation</u>:
 - Nuclear data of relevance for criticality-safety can be adjusted in existing libraries
 - What happens if we consider non-adjusted nuclear data ?
 - What happens if we consider microscopic models ?
 - -What is the impact on criticality-safety benchmarks ?

- <u>Approach</u>:
 - $-\,195~k_{\rm eff}$ benchmarks (hmf, pmf, imf and mmf, list at the end of the presentation)
 - Isotopes: U, Pu, Cu, Fe, Ni, W, Ni, Cr, Ga, Mo, Ti, Mn, Mg, F
 - Consider JEFF-3.3 (maybe adjusted) and also TALYS pure microscopic model(s)
 - TALYS models: many, from phenomenological to microscopic approach

TALYS models

	Default (phenomenological)	Microscopic (theoretical)
E1 strength	SLMO	Gogny D1M HFB+QRPA
Level density	Constant temperature + Fermi gas model	Gogny-Hartree-Fock- Bogoluybov level densities
OMP	KD (local)	JLM microscopic optical model potential
M1 strength	Hartree-Fock BCS tables	
Collective enhancement LD	No	
Width fluctuation mode	Moldauer	
Mass model	Goriely HFB-Skyrme table + Exp. masses	Goriely HFB-Skyrme table, no Exp. masses
Alpha OMP	Avrigeanu	
Fission barriers	"experimental"	Theoretical, WKB approximation for fission path model
Discrete level	RIPL	Theoretical levels
Best + fit	Yes	No
Global parametrization PSF	No	Yes
Global systema. level den.	No	Yes

http://www.psi.ch/stars

 PAUL SCHERRER INSTITUT

²³⁹Pu(n,f) cross section

- 195 benchmarks
- JEFF-3.3:
- Default phenomenological models:
- Microscopic (theoretical) models:

C/E= 1.00175 ± 530 pcm C/E= 0.98300 ± 6900 pcm C/E= 0.99069 ± 4760 pcm

- This quantifies the evaluation efforts:
 - Reduce the bias from
 - Reduce the spread from

- ≈2000 pcm to ≈200 pcm
- ≈5000 pcm to ≈500 pcm

Results with adjusted microscopic ²³⁹Pu

- What if we adjust parameters of microscopic models for ²³⁹Pu (all other isotopes from JEFF-3.3)
- 90 pmf, imf and mmf benchmarks (no hmf benchmarks)

Results with adjusted microscopic ²³⁹Pu

- What if we adjust parameters of microscopic models for ²³⁹Pu (all other isotopes from JEFF-3.3)
- 90 pmf, imf and mmf benchmarks (no hmf benchmarks)
- JEFF-3.3:
- Default phenomenological models:
- Microscopic (theoretical) models: C/E= 0.99110 ± 4210 pcm

 $C/E = 1.00179 \pm 480 \text{ pcm}$

Adjusted microscopic (theoretical) models C/E= 1.00087 ± 1450 pcm

Other models in TALYS

TALYS contains many models. Variations are applied in TENDL-astro 2023

TENDL-astro 2023

Cross sections, reaction rates and MACS for astrophysics

Recommended quantities			
Cross sections			
$\begin{array}{l} 1. (\underline{n},\underline{g}) (\underline{n},\underline{p}), (\underline{n},\underline{a}), \\ 2. (\underline{p},\underline{g}) (\underline{p},\underline{n}), (\underline{p},\underline{a}), \\ 3. (\underline{a},\underline{g}) (\underline{a},\underline{n}), (\underline{a},\underline{p}), \end{array}$			
Reaction rates			
1. $(\underline{n},\underline{p})$ $(\underline{n},\underline{p})$, $(\underline{n},\underline{a})$, 2. $(\underline{p},\underline{p})$ $(\underline{p},\underline{n})$, $(\underline{p},\underline{a})$, 3. $(\underline{a},\underline{p})$ $(\underline{a},\underline{n})$, $(\underline{a},\underline{p})$,			
Normalized partition function $\underline{G(\mathbb{T})}$			
30 keV Laboratory Maxwellian Averaged (n,g) Cross Sections MACS			

Description of TALYS models

Below are various links to 8892 isotopes for astrophysics applications (cross sections, reaction rates and MACS) based on TALYS calculations (version 1.96).

Different reaction "model sets" were used: "a model set" represents a combination of 9 TALYS models:

- 1. Gamma strength function (values 8 or 9): either Gogny D1M HFB+QRPA, or SMLO
- 2. Level density (values 1, 2 or 5): Constant temperature + Fermi gas model, or Back-shifted Fermi gas model, or Microscopic level densities (Skyrme force) from Hilaire's combinatorial tables
- 3. JLM microscopic optical model potential or KD optical model (values y or n)
- 4. Gamma strength function for M1 (values 3 or 8): Hartree-Fock BCS tables or Gogny D1M HFB+QRPA
- 5. Collective enhancement (values y or n): yes or no
- 6. Width fluctuation (values 0, 1 or 2): Moldauer model, or Hofmann-Richert-Tepel-Weidenmueller model
- 7. Mass model (values 0, 1, 2 or 3): Duflo-Zuker formula, Moeller table, Goriely HFB-Skyrme table, or HFB-Gogny D1M table (except for known masses, where the experimental value is used)
- 8. Alpha optical model (values 5 or 6): Demetriou/Goriely, or Avrigeanu
- 9. Fission model (values 1 or 5): "experimental" fission barriers, or WKB approximation for fission path model.

Each of the set models is named with 9 values, such as "91n3n1261" (default TALYS model), or 85n8n1261. These values correspond to the ones in the TALYS manual.

In total, more than 960 model variations

http://www.psi.ch/stars

- 195 fast benchmarks considered (hmf, pmf, imf, mmf)
- Nuclear data from (non adjusted) models
- Average C/E:
 - Default models:
 - Microscopic models:
 - -Other models:

C/E= 0.98300 ± 6900 pcm C/E= 0.99069 ± 4760 pcm C/E from 0.22700 to 1.23400

- JEFF-3.3: C/E= 1.00175 ± 530 pcm
- Microscopic model can possibly be adjusted.
- This quantifies the evaluation efforts: gain a factor 10 in precision and accuracy
 - Reduce the bias from $\approx 2000 \text{ pcm to} \approx 200 \text{ pcm}$
 - Reduce the spread from $\approx 5000 \text{ pcm to} \approx 500 \text{ pcm}$

Wir schaffen Wissen – heute für morgen

• <u>hmf</u>: 82 cases

hmf1.1, hmf3.1, hmf3.3-hmf3.12, hmf4.1, hmf5.1-hmf5.6, hmf7.1-hmf7.9, hmf8.1, hmf9.1, hmf9.2, hmf11.1, hmf12.1, hmf13.1, hmf15.1, hmf18.1, hmf19.1, hmf20.1, hmf21.1, hmf22.1, hmf24.1, hmf25.1-hmf25.5, hmf26.11, hmf27.1, hmf28.1, hmf34.1-hmf34.3, hmf41.1-hmf41.6, hmf43.1-hmf43.5, hmf44.1-hmf44.5, hmf48.1, hmf48.3, hmf48.5, hmf48.7, hmf48.9, hmf56.1, hmf57.1-hmf57.6

• <u>pmf</u>: 72 cases

pmf1.1, pmf2.1, pmf3.101-pmf3.105, pmf4.207-pmf4.215, pmf5.1, pmf6.1, pmf8.1, pmf9.1, pmf10.1, pmf11.1, pmf12.1, pmf13.1, pmf14.1, pmf15.1, pmf16.1-pmf16.6, pmf17.201-pmf17.205, pmf18.1, pmf19.1, pmf20.1, pmf21.1, pmf22.1, pmf23.1, pmf24.1, pmf25.1, pmf26.1, pmf27.1, pmf28.1, pmf29.1, pmf30.1, pmf31.1, pmf32.1, pmf33.1, pmf35.1, pmf36.1, pmf37.1, pmf38.1, pmf39.1, pmf40.1, pmf41.1, pmf44.1-pmf44.5, pmf45.1-pmf45.5, pmf46.1, pmf46.2

• <u>imf</u>: 23 cases

imf1.1-imf1.4, imf2.1, imf3.1, imf3.2, imf4.1, imf5.1, imf6.1, imf7.1, imf10.1, imf12.1, imf13.1, imf14.1, imf14.2, imf20.1-imf20.7, imf22.1

• mmf: 18 cases

mmf1.1, mmf2.1-mmf2.3, mmf3.1, mmf7.1, mmf7.3, mmf7.5, mmf7.9, mmf7.11, mmf7.13, mmf7.15, mmf8.1, mmf11.1-mmf11.4

- <u>Actinides</u>: ^{234,235,236,238}U, ^{239,240,241}Pu
- <u>Others</u>: ^{63,65}Cu, ^{54,56,57,58}Fe, ^{58,60,61,62,64}Ni, ^{180,182,183,184,186}W, ^{28,29,30}Si, ^{50,52,53,54}Cr, ^{69,71}Ga, ^{92,94,95,96,97,98,100}Mo, ^{46,47,48,49,50}Ti, ⁵⁵Mn, ^{24,25,26}Mg, ¹⁹F

Typical TALYS inputs

1	*
2	# TALYS input file generated by Autotalys
3	#
4	projectile n
5	element Th Defau
6	mass 232 DCTAC
- 7	Ltarget 000
8	energy energies
9	partable y
10	bins 60
11	#
12	# Do not use best parameters from database
13	#
14	best n
15	#
16	# Set multi-preequilibrium switch lower for actinide:
17	#
18	multipreeq 6.
19	isomer 0.1
20	#
21	<pre># Produce files for processing into ENDF and</pre>
22	<pre># increase required precision</pre>
23	#
24	endf y
25	endfdetail y
26	popeps 1.e-12
27	transeps 1.e-20
28	transpower 15
29	xseps 1.e-20
30	
31	# Output of extra channels
32	# channels u
33	filechannels y
35	±
36	π ± Recoils
37	±
38	recoil v
39	recoilaverage v
40	urr 20
41	Upbend v
42	Ngfit y
43	strength 9
44	ldmodel 1
45	jlmomp n
46	strengthM1 3
47	colenhance n
48	widthmode 1
49	massmodel 2
50	alphaomp 6
51	fismodel 1
52	disctable 1

http://www.psi.ch/stars

1 #		
2 # TALYS input file generated by Autot	alys	
3 #		
4 projectile n		
5 element Th	crosconic	
6 mass 232	cioscopic	
7 Ltarget 000		
8 energy energies		
9 partable v		
10 bins 60		
11 #		
12 # Do not use best parameters from dat	abase	
13 #		
14 best n		
15 #		
<pre>16 # Set multi-preequilibrium switch low</pre>	er for actinides	
17 #		
18 multipreeq 6.		
19 isomer 0.1		
20 #		
21 # Produce files for processing into E	NDF and	
<pre>22 # increase required precision</pre>		
23 #		
24 endf y		
25 endfdetail y		
26 popeps 1.e-12		
27 transeps 1.e-20		
28 transpower 15		
29 xseps 1.e-20		
30 #		
31 # Output of extra channels		
32 #		
33 channels y		
34 filechannels y		
35 #		
36 # Recoils		
37 #		
38 recoil y		
39 recoilaverage y		
40 urr 20		
41 strength 8		
42 ldmodel 5		
43 disctable 3		
44 JIMomp y		
45 IIC N		
40 Dest n		
47 Hismodel 5		
49 agus u		
50 localomp n		
51 evonage n		