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ABSTRACT 

 

The use of Monte-Carlo (MC) simulations for reactor cores is currently of high interest 

[1][2]. Resulting MC models would be relevant, e.g., for high-resolution assessments of 

the local neutron flux and power gradients [3], generally beyond the modelling 

capabilities of deterministic codes for regular full core simulations. Such MC simulations 

would be of particular importance for the advancement of reactor operation and safety 

assessments or, for example, to support designing new materials testing experimental 

programs at operational reactors. Nevertheless, MC-based core-follow burnup 

calculations are still very challenging for routine applications. Therefore, the LRT/PSI 

has developed in recent years a “cycle-check-up” (CHUP) concept, which allows the 

transfer of the operating conditions (coolant and fuel temperatures, density of moderator, 

boron concentration, position of control rods) and burned fuel isotopic compositions from 

validated reference core-follow models, based on the state-of-the-art deterministic codes 

CASMO/SIMULATE/SNF to MC codes, such as Serpent or MCNP®. Thanks to the 

availability of the validated deterministic core-follow models and access to additional 

reference data for Swiss power plants, such as start-up tests at PWRs, there is a valuable 

opportunity to extend the validation database for criticality safety evaluation 

methodology using Swiss reactors data. This paper presents the ongoing work towards 

the verification and validation (V&V) of MC full core simulations for burned 

configurations against results of the validated deterministic models, as well as real 

measurements for hot zero power (HZP) reactor conditions. 
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1. INTRODUCTION 

 

Monte Carlo methods are commonly applied in neutron transport problems due to their unique capability 

in modelling complex three-dimensional systems and the use of neutron cross-sections with high 

resolution in the energy and angle variables. However, MC-based core-follow burnup calculations are 

still challenging for routine applications due to computationally requirements.  

 

To overcome this limitation, a methodology consisting of loading information from validated burned 

deterministic models into an equivalent MC input is under development at PSI. For this purpose, the in-

house automatic transfer tool COMPLINK [4] was used. The capability of this tool to automatically 

extend a user-given MC model to load heterogeneous material specifications, keeping track of the 

location of these materials within nested repeated structures, was used to model the core of a Swiss PWR 

at the beginning of a cycle (BOC), close to “equilibrium state”. With this tool, the operating conditions 

and, most importantly, operational burned fuel isotopic compositions coming from CASMO-

5/SIMULATE-3/SNF-1.07.05 were directly transferred in a MC input. By applying this methodology 
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on a PWR core MC template already available at PSI/LRT [5], a 38 million lines MC input was 

automatically created, accurately describing the HZP conditions at BOC. 

 

To create these MC inputs, preliminary studies were necessary. Indeed, the drawback of the 

methodology used is the high memory consumption required for each simulation (up to 146 GB in the 

most extreme current case). By using this methodology in a brute force way, a single composition is 

defined for each of the 40 axial segments of every pin of the core. However, the core considered is 

composed of 177 fuel assemblies (FAs). Each of these FAs is composed of 205 pins and each of these 

pins is described axially by 40 segments. Therefore, a full-core simulation would require more than 1.4 

million compositions, resulting in an extremely memory-intensive simulation.  

 

Two approximations were made to address this problem. The first was to take advantage of the reactor 

“symmetries” to model only one octant of the core. The second solution was to realize a clustering of 

the pin compositions in the radial plane. For this purpose, the average composition of different pin 

groups was used to reduce the number of materials needed to describe each segment of the FAs.  

For example, as shown in Figure 1, by using only the materials present in one octant of the core and 

repeating it over 360 degrees by reflection (using the USYM option of the Serpent 2.2 code), the number 

of FAs to be modelled was reduced to 29. In addition, an extreme clustering scheme has also been 

applied to this model. Only the average pin composition in each segment of the FA was modelled. With 

these two approximations, only 29 × 40 × 1 = 1160 different compositions were needed to model the 

burned fuel. Finally, Serpent 2.2 was preferred over MCNP® 6.2 because of the memory consumption 

and initialization time of the simulations [6]. Using these approximations, it was possible to run the 

Serpent model shown on the right side of Figure 1 using only 10 GB of memory (see Section 4). 

 

 
  

Figure 1. (Left) COMPLINK output. Serpent model: radial plane (Middle), axial plane (Right). 

One group of composition used per FA segment. 

 

The work presented in this article consists of the V&V of the BOC MC model using a validated 

deterministic CASMO/SIMULATE scheme from which the isotopic composition is extracted using the 

SNF code [7]. Section 2 presents a verification of the isotopic composition produced by SNF against 13 

isotopic weight fractions (wt. %) written in SIMULATE-3 (S3) output. Section 3 illustrates the 

verification of the 𝑘𝑖𝑛𝑓 of MC models for each of the 1160 segments that make up the core. Section 4 

presents the validation of the full MC model using deviations from criticality and three-dimensional 

relative power fraction for different clustering schemes. The impact of the different clustering on 

memory consumption is also discussed in this section. Finally, Section 5 presents deviations from 

criticality of the MC model for a real experimental operating condition. 

  

2. Verification of the fuel composition 

 

A first verification of the mean isotopic composition of each FA was performed at BOC. Using the 

“PRI.ISO” card, S3 summarizes the weight fraction of 13 heavy metal isotopes for each FA. On the 

other hand, the SNF code can extract the isotopic concentration (in g. tonHM−1) of 680 isotopes for 
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each pin segment of each FA. The average SNF wt. % of each FA was then calculated and compared to 

those given by S3. Examples for U-235 and Am-241 are presented in Figure 2. It is important to note 

regarding Figure 2 that the 0% and “NA” relative deviations for U-235 and Am-241 correspond to fresh 

FAs. In fact, for the cycle considered, the FAs come from previous cycles and have thus specific Burnup 

values.  

 

In the upper part of Figure 2, a good agreement is obtained for the fresh FAs. For these fresh FAs, the 

isotopic composition (U-234, U-235, U-236 and U-238) was manually extracted from the equivalent 

CASMO input. For the lower part, “NA” is specified, as no Am-241 is present in fresh FAs. 

 

 

 
Figure 2. Axial-average fuel composition in wt. % given by S3 (left) and SNF (middle) for U235 

(upper) and Am241 (bottom) and the relative deviations between these quantities (right).  

 

It can be observed in the upper part of Figure 2, that the maximum relative deviation ([𝑆3 − 𝑆𝑁𝐹] / 𝑆3) 

for isotope U-235 is -0.3%. Considering all FAs, the mean relative deviation for this isotope is -0.12% 

with a 0.09% standard deviation. The U-235 wt. % given by SNF can be considered in good agreement 

with S3. As shown in Table I, this agreement is similar for all other uranium isotopes. 

 

Table I. Mean relative deviation between the isotopes given by S3 and SNF. 

 

Isotope 

Mean relative 

deviation ± 1 

𝒔𝒊𝒈𝒎𝒂 (%) 

Isotope 

Mean relative 

deviation ± 1 

sigma (%) 

Isotope 

Mean relative 

deviation ± 1 

sigma (%)  

U-234 -0.26 ± 0.94 Pu-238 5.96 ± 9.63 Np-237 0.78 ± 0.95 

U-235 -0.12 ± 0.09 Pu-239 -1.34 ± 2.88 Am-241 -2.57 ± 33.32 

U-236 -0.01 ± 0.04 Pu-240 -1.15 ± 2.08 Cm-242 10.22 ± 33.31 

U-238 -0.04 ± 0.03 Pu-241 0.44 ± 2.35 Cm-244 7.97 ± 13.12 

  Pu-242 3.97 ± 7.05   

 

For the other isotopes, the agreement is not of the same quality. The mean relative deviations and 

variabilities are higher. For example, a mean deviation of 10% can be observed for Cm-242. 

Furthermore, when looking further at the compositions per FA, a relative deviation of -120% was 
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observed for isotope Am-241 (lower-right part of Figure 2). However, although the deviations are larger 

for these isotopes, the overall agreement between S3 and SNF was considered good enough.  

 

3. 𝒌𝒊𝒏𝒇 numerical verification. 

 

After verification of some isotopic compositions given by SNF, the next verification step was conducted 

on the most elementary bricks that make up the core. Independent MC models were constructed for each 

of the 1160 segments present in the octant of the core considered. For each of these models, all isotopes 

simultaneously present in the ENDF/B-VII.1 library and the SNF output were loaded. Thus, up to 244 

isotopes were used to describe the composition of FAs segments. In practice, only 959 models were 

built. The first segment at the bottom of the core was not modelled due to geometrical inaccuracy. 

Similarly, not all 40 fresh FA segments were modelled (and a unique model was used), as they would 

have led to equivalent models (each of the 40 fresh FA segments share the same fuel composition).  

 

The quantity used to verify these MC segment models is the infinite three-dimensional multiplication 

factor 𝑘𝑖𝑛𝑓 (3KIN card) given by S3. This quantity was compared to the effective multiplication factor 

(𝑘𝑒𝑓𝑓) given by the MC models using reflective conditions on all model outer boundaries, i.e. 𝑘𝑖𝑛𝑓. To 

simplify the visualization of these results, the three-dimensional 𝑘𝑖𝑛𝑓 was averaged along the axial axis. 

This integration has led to the two-dimensional radial 𝑘𝑖𝑛𝑓. This quantity is presented in the left-hand 

side of Figure 3 for S3 and the middle for the MC models (the first segment is not taken into account 

for the results presented in this section). These integrated MC results have a mean uncertainty of ±3 

pcm. The right-hand side of Figure 3 shows the difference between S3 and Serpents models. 

 

 
Figure 3. Radial distribution of axially averaged 𝒌𝒊𝒏𝒇. Results from S3 (left) and Serpent 

(middle). (Right) Difference: (𝑺𝟑 − 𝑺𝒆𝒓𝒑) 

 

Figure 3 shows good agreement between the axially averaged 𝑘𝑖𝑛𝑓 given by S3 and the Serpent models. 

For the 5 fresh FAs (assemblies with a 𝑘𝑖𝑛𝑓 ≈ 1.23) a mean difference of -143 pcm is observed with a 

standard deviation of 22 pcm. For these FAs, the isotopic composition is exactly known, thus eliminating 

the uncertainty associated with its modelling. Thus, this result confirms that the geometry, compositions, 

and operation conditions of the FAs are well-modelled. For burned FAs, a mean difference of 320 pcm 

is observed with a standard deviation of 287 pcm.  

 

To understand the behavior of these results, the axial node-wise distribution of the 𝑘𝑖𝑛𝑓 obtained for a 

fresh and burned FA is presented on the left and right side of Figure 4, respectively. The selected FAs 

are highlighted on the right-hand side of Figure 3 with a thick black frame. The fresh FA has an axially 

averaged 𝑘𝑖𝑛𝑓 difference of -117 pcm and the burned one has a +369 pcm difference.  

Figure 4 presents the 𝑘𝑖𝑛𝑓 obtained for each of the independent MC models composing a FA. Segments 

1-4 correspond to the bottom part of a FA. These segments include a dashpot zone to enhance structural 
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stability and to act as a shock absorber in case of rapid insertion of the control rods. Segment 5 

corresponds to a segment with a dashpot at mid-height. Segments (6, 12, 18, 24, 30, and 36) include 

spacers and segments 38-40 include control rods. Remaining ones represent raw fuel segments. 

 

     
Figure 4. Axial node-wise 𝒌𝒊𝒏𝒇 distribution for a fresh (left) and burned (right) fuel assembly. 

Uncertainty given at ±𝟑𝝈 for MC results.  

 

The 𝑘𝑖𝑛𝑓 nodal distribution of the fresh FA displayed on the left of Figure 4 shows that a good agreement 

is obtained between Serpent and S3. A small Serpent overestimation is systematically observed (axially 

averaged 𝑘𝑖𝑛𝑓 difference of -117 pcm for this fresh FA). This figure gives thus some confidence in the 

MC modelling performed even if small differences are observed. 

 

Concerning the burned FA nodal 𝑘𝑖𝑛𝑓 distribution shown on the right-hand side of Figure 4, a difference 

of about 400 pcm is obtained over the whole set of raw fuel segments. For the six spacer models, a 

difference of 600 pcm is obtained. This difference of 200 pcm compared to the raw segments means that 

the spacer models still need to be adjusted to match closer to the S3 results. Finally, segment 40 shows 

a significant difference from the other control rod segments 38 and 39 (as well as from all other FA 

segments). However, the MC model of segment 40 is equivalent to the other control rod models except 

for the SNF isotopic composition loaded. This discrepancy can be explained by the isotopic composition 

for segment 40, which may not be as good as for the other segments due to the proximity of the reflector.  

 

Two weaknesses of the 𝑘𝑖𝑛𝑓  verification must be highlighted. First, with this quantity, it was not 

possible to verify the reflector of the MC model. No information on the reflector is contained in the 𝑘𝑖𝑛𝑓 

results, which makes this verification unfeasible with this quantity. The second weakness is that only 

the average pin composition per FA and segment were used. This approximation was made to reduce 

the computational burden of this analysis. Each simulation took an average of 33 minutes on 7 tasks to 

achieve an uncertainty of 0.02% on the multiplication factor. Given that 1000 simulations were 

performed, this approximation was considered sufficient in a first verification phase.  

 

As a conclusion to this section, even if some possible mismatches were identified, the overall agreement 

between the 𝑘𝑖𝑛𝑓 results given by Serpent and S3 was considered good enough at this stage of the work. 

To continue this study a 𝑘𝑒𝑓𝑓 and a relative power fraction (RPF) comparison over a full core MC model 

against S3 is presented in the next section.  



6 

 

4. 𝒌𝒆𝒇𝒇  numerical validation 

 

In this section, full core simulations were considered using the compositions present in one octant of the 

core and repeating over 360 degrees by reflection. The effect of four different composition clustering 

schemes was studied on the neutron multiplication factor and memory consumption. It is well known 

[6] that the use of a large number of cells and compositions in a MC input has an impact on the size of 

the memory required to run a simulation. Given that the computational cluster used to run these 

simulations has 256 GB of RAM, four progressively more refined MC inputs were prepared to test the 

limits of achievable modelling and validated against a model using pin-wise composition. 

 

The nuclear lattice of the FAs studied is described by a 15 × 15 grid composed of 205 nuclear fuel rods 

and 20 guide tubes. The first clustering scheme studied uses the most extreme approximation. The 

average fuel composition of each segment was loaded into all of the 205 fuel pins. Consequently, only 

40 different fuel compositions were needed per FA. This clustering scheme is presented on the left side 

of Figure 5 (and also in Figure 1). The second clustering scheme prepared uses 9 groups of compositions 

per segment. For this model, a regular grid of 5 × 5 pins was used. The resulting clustering is displayed 

in the middle-left of Figure 5. The 25 groups clustering uses also a regular grid. This time a thinner grid 

step of 3 × 3 pins was used. The resulting mesh is displayed in the middle-right of Figure 5. Finally, the 

finest clustering scheme uses 81 groups. As shown on the right-hand side of Figure 5, this clustering 

uses an evolving grid step that is thinner near the edge and wider in the center of each FA. 

 

 
Figure 5. Clustering scheme. From left to right: 1, 9, 25 and 81 groups per FA and segments. 

 

The creation of these Serpent MC models has been automated using the COMPLINK tool and its options 

(this tool can also create MCNP® models). Using this tool for the pin-wise composition model made it 

easy to create an input file of 38 million lines with the required fuel composition resolution, operating 

conditions, geometry, coolant and fuel temperature, moderator density, boron concentration and position 

of control rods. By using this tool, 252892 cells were created at the right place using 231742 well-

defined materials. However, this high resolution is challenging. In practice, the automated creation of 

the pin-wise MC input (displayed in Figure 6) using this in-house tool has required 3.5 day. 

 

 
Figure 6. MC model using pin-wise composition for each segment of each assembly. 
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As expected, it can be observed in the column “RAM consumption” in Table II, that by increasing the 

number of groups (and consequently the number of cells and materials) memory consumption has 

significantly increased. A linear approximation of this trend, for the four models using the clustering 

approximation, would be that each group requires 1 GB of additional memory, knowing that the memory 

required for the 1–fuel rod group model is 10 GB. Looking at the result for the pin-wise composition 

model, it can be seen that the memory requirement is only 55 more GB than the 81-clustering scheme 

model. If the linear trend had been followed, 215 GB would have been needed for the pin-wise 

simulation.  

 

In addition, it can be observed in the column “Difference 𝑘𝑒𝑓𝑓” of Table II for the considered HZP 

operating condition, that the overall agreement for the multiplication factor provided by S3 (1.00000 as 

a matter of principle) and those from the MC models are in the range of 240-295 pcm. By using a thinner 

grouping scheme or even the pin-wise resolution, the multiplication factor moves away from criticality. 

However, the observed deviation range is quite small (51 pcm), meaning that as a first approximation, 

it may be interesting to work with the 1-group model. By doing so, it is possible to avoid the memory 

drawbacks of MC simulations and the time required to generate input models using the COMPLINK 

tool. With this clustering scheme, it takes only 1 minute to generate the input file composed of 260,000 

lines. It can also be observed that the effect of the clustering approximation associated with the use of 

81 groups leads to only a 3 pcm discrepancy in comparison to the pin-wise resolution simulation. 

 

Table II. Effective multiplication factor validation for different clustering schemes.  

 

Clustering 

scheme 

Number 

of cells 

Number of 

materials 

RAM 

consumption 

𝒌𝒆𝒇𝒇 (±𝜎%) 

Serpent 

Difference 𝒌𝒆𝒇𝒇   

S3  - Serpent 

(pcm) 

1 2337 1844 10 Gb 0.99759 (±0.001%) 241 

9 12420 11154 18 Gb 0.99738 (±0.001%) 262 

25 31871 29137 31 Gb 0.99724 (±0.001%) 276 

81 98916 91122 91 Gb  0.99711 (±0.001%) 289 

Pin-wise  252892 231742 146 Gb 0.99708 (±0.001%) 292 

 

The numerical validation of the MC models is performed against S3. Therefore, a multitude of quantities 

can be extracted directly from the S3 output to validate the MC models. To complete the numerical 

validation, the 3D relative power fraction output of S3 (3RPF card) was also studied. The use of this 

three-dimensional information allows for a more accurate identification of the location of possible 

discrepancies in the modelling performed. To estimate this quantity with Serpent, total fission rates were 

tracked on a mesh covering each of the FAs segments. This information was then normalized to obtain 

the 3D RPF from the MC outputs. 

 

An axial average was performed to ease the visualization of this three-dimensional quantity. The 

resulting 2D radial RPF distribution is displayed in Figure 7. The left side of Figure 7 presents the results 

extracted from S3, the middle side presents the results estimated with Serpent using the 81-group 

clustering scheme introduced previously and the right side presents the relative difference 

([𝑆3 –  𝑆𝑒𝑟𝑝] / 𝑆3) between these two quantities. 

 

Qualitatively, a good agreement is obtained between S3 and Serpent for the radial distribution of axially 

average RPF with relative deviations in the [−7%, 7%] range. A detailed examination of these 

deviations leads to several observations. First, S3 overestimates Serpent in the center of the core. 

Secondly, “discrepancy patterns” are repeated all over the core. These patterns are probably due to the 

octant approximation presented in Figure 1. By repeating the composition of the FAs present in a single 

octant over the entire core, asymmetries present in the real core and modeled with S3 are not taken into 

account in the MC model. This approximation can therefore lead to the observed discrepancy patterns. 

For example, the 4 highest observed relative deviations (6-7% deviations displayed in red on the right-
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hand side of Figure 7) are associated with the 4 highest FA exposure asymmetries (in the center of the 

core). 

 

 
Figure 7. Radial distribution of axially averaged RPF estimate with S3 (left) and Serpent using 

the 81-group clustering scheme (middle). (Right) Relative deviation between these quantities in 

percent.  

 

On the other hand, S3 underestimates Serpent in the core-periphery. This discrepancy is observed for 

all fresh FAs. The associated relative deviations are in the [-7,-4] % range and are shown in green on 

the right-hand side of Figure 7. However, good agreements were obtained in the numerical validation 

performed with the 𝑘𝑖𝑛𝑓  on fresh FAs (illustrated in the left-hand side of Figure 4). Therefore, the 

normalization of the fission rates estimated using Serpent to subsequently derive the 3D RPF may 

explain this discrepancy. 

 

To complete these validation results, the radially averaged 3D RPF is displayed on the left-hand side of 

Figure 8. Good agreement is also observed with associated relative deviations in the [-8, 4] % range. A 

linear trend is observed for the relative deviation between segments 9-36. As with the axially averaged 

RPF, this observation may be due to the performed normalization. Another observation concerns 

segment 1 at the bottom of the core. The relative error of this segment is quite different from the 

neighboring segment 2. This difference may be due to the modelling of the bottom reflector in the current 

MC model. However, as the mean axial RPF curve shows (left of Figure 8), although the discrepancy is 

larger for this segment, the contribution to the core power is small. Consequently, this discrepancy can 

be considered as of the second order. Segment 40 also behaves differently from other segments. This 

segment is also located near top reflector. Therefore, due to the discrepancies observed near the reflector, 

a refinement of the MC model will be performed on the top and bottom part of the core to improve the 

argument with S3 outputs.  

 

In addition to the mean axial RPF distribution, the node-wise RPF distribution of a fresh and burned FA 

is presented in the middle and right side of Figure 8. These two FAs are highlighted in Figure 7 by thick 

black borders. The fresh FA has a mean relative deviation of -6% and the burned one 5%. The overall 

profile of the relative deviation from these two FAs is similar to the average one. It can be observed in 

the middle graph of Figure 8, that Serpent systematically overestimates S3 for the fresh FA. For the 

burned FA, S3 overestimates Serpent by up to 10% at the top of the core.  
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Figure 8. (Left) Axial distribution of radially average RPF. Axial node-wise RPF for a fresh FA 

(Middle) and a burned one (Right). Uncertainty given at ±𝟑𝝈 for MC results.  

 

5. 𝒌𝒆𝒇𝒇 experimental validation and perspectives 

 

Following the numerical validation, an experimental validation was performed using measured HZP 

conditions. The measured boron concentration, temperature and position of the control rods were 

specified in the MC models. The octant composition approximation and the 1-group clustering scheme 

were used for the experimental validation. Using this model at this experimental operating condition, a 

400 ±1 pcm subcritical model was obtained. Given the results obtained in Table II, the use of the pin-

wise composition resolution would probably result in a deviation of 450 pcm. 

 

To push further this work different tasks will be considered. Looking at the numerical validation based 

on the relative power fraction, an idea would be to model more than an octant of the core. By doing so, 

discrepancies associated with asymmetries will possibly be corrected. However, the memory required 

by these simulations will significantly increase. Therefore, the number of groups that can be used for 

clustering will decrease as a larger portion of the core is modelled. To address this constraint, one 

possibility would be to develop a grouping scheme based on the spatial distribution of the isotopic 

composition of the burned FAs depending on the number of available groups. By using techniques that 

reduce the dimension of the problem while preserving the maximum amount of information, a more 

elaborated grouping scheme would be produced. First trials were realized using principal component 

analysis. By doing so, better informed clustering schemes were produced. This strategy will be 

automatized and verified on the octant MC model against available S3 results. It will then be possible 

to implement it on MC models of a larger portion of the core to tackle memory limitations.  

 

It would also be interesting to identify the cause of the small discrepancies observed during the 𝑘𝑖𝑛𝑓 

analysis presented in section 3 and to correct the doubtful top and bottom reflector. By doing so, the MC 

model would be even closer to the true operating core. Another idea would be to use SIMULATE-5 as 

a new reference for the numerical validation. It would be also interesting to perform the presented 

numerical validation on other operation conditions than the studied HZP condition. By studying more 

cases, better confidence will be obtained in the MC model created. As the COMPLINK tool has been 

specially developed to study hot full power, this idea seems feasible.  

 

The final step of this V&V study would be to confront the MC model with experimental in-core 

measurements, as well as additional verification of the multiplication factor of other HZP operation 

conditions. These studies would give a strong validation of the modelling performed. 
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6. Conclusion 

 

This article presents different analyses dedicated to the V&V of a MC model of an evolved HZP 

condition. Two approximations were presented to overcome the known memory limitations of this type 

of simulations. These approximations consist of a symmetry approximation and a clustering of pin 

compositions to reduce the number of materials required. Based on these approximations, a MC input 

composed of 231742 different materials was constructed using the in-house COMPLINK tool for the 

automatic generation of burned configurations. The fuel pin composition was extracted directly from 

SNF outputs associated with a validated deterministic model.  

 

First, verification of these compositions was performed against S3. Secondly, the MC modelling was 

verified using the infinite multiplication factor of the simplest blocks making up the full core. A 

numerical validation was also conducted using the full core model against validated deterministic 

results. During this numerical validation, the impact of the clustering approximation was studied. Using 

pin-wise resolution, a 38 million line input was generated leading to simulations requiring 146 GB of 

memory. For this specific model, a 292 pcm deviation from criticality was observed. In addition to this 

validation, the three-dimensional power obtained with the MC model was also verified. Agreement in 

the [-6, 5] % range was obtained for the axially integrated power outputs. Finally, an experimental 

validation was performed for a real operating condition. A 400 pcm deviation from criticality was 

observed using a coarse clustering approximation. All these results show that the MC model can still be 

improved and validated using more precise approximations and more numerical and experimental 

results.  

 

It should be noted that the obtained 𝑘𝑒𝑓𝑓 bias should be considered as preliminary and in the future 

accomplished with 𝑘𝑒𝑓𝑓 uncertainties evaluations associated with a) nuclear data uncertainties used for 

the criticality calculations and b) isotopic composition biases and uncertainties coming from 

CASMO/SIMULATE/SNF.  
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