PAUL SCHERRER INSTITUT

D. Rochman

Validation and uncertainties for GU3: the PSI experience

WPNCS SG10 meeting, online, 30 January 2024

- Method
- Validation
- Uncertainties
- All results available here:

EPJ Nuclear Sci. Technol. 7, 14 (2021) © D. Rochman et al., Published by EDP Sciences, 2021 https://doi.org/10.1051/epjn/2021013

Available online at: https://www.epj-n.org

OPEN ACCESS

REGULAR ARTICLE

Analysis for the ARIANE GU3 sample: nuclide inventory and decay heat

Dimitri Rochman^{1,*}, Alexander Vasiliev¹, Hakim Ferroukhi¹, Mathieu Hursin¹, Raphaelle Ichou², Julien Taforeau², and Teodosi Simeonov³

¹ Reactor Physics and Thermal hydraulic Laboratory, Paul Scherrer Institut, Villigen, Switzerland

² Laboratoire de Neutronique, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France

³ Studsvik Scandpower, Inc., Newton, MA, USA

Received: 20 May 2021 / Received in final form: 2 August 2021 / Accepted: 10 August 2021

Motivation and method

- GU3 is part of the ARIANE program, and was irradiated in Gösgen, Switzerland
- Part of the CASMO5 validation with PIE set at PSI (PROTEUS, ARIANE, MALIBU): 27 samples
- UO₂ sample, 4.1% enr., in 15x15 PWR assembly, 3 consecutive cycles (16,17,18), in 2 assemblies
- Access to the detailed irradiation histories for both assemblies from core follow-up validation with CASMO5/SIMULATE-3

Fig. 2. Locations of the assemblies 16-01 (cycles 16 and 17) and 17-01 (cycle 18) containing the GU3 sample. The positions of both assemblies are indicated by a cross. The colors are proportional to the assembly burnup obtained from SIMULATE-3 at the end of each cycle (EOC).

Motivation and method

- GU3 was analyzed in ITU and GU3' in SCK (same sample)
- Different measured nuclide concentrations, different measurement times.
 - -Nd148 differs by 5%
 - -Some ITU measurements were rejected by ARIANE
 - -FIMA differs by 5%
 - Recommendations by ORNL (used in SG10)

14

Core top

222 cm

Reflector

- CASMO5: different versions, different nuclear data libraries
- Irradiation history based on detailed information from SIMULATE-3
 - -20 steps/cycle
 - Changing moderator and fuel temperatures, power density, reactor pressure, and eventually the control rod position.
 - No burnup adjustment was necessary to match the Nd-148 from GU3'
- Estimated sample burnup: 52.5 ± 0.5 MWd/kg (U).

Table 2. Comparison of average C/E-1 (in%) between different types of calculations for GU3 and GU3', see text for details.

Code	Library	case	GU3'	(SCK)	GU3 (ITU)	Reference [8]
			52 isotopes	45 isotopes	45 isotopes	50 isotopes
			AC/FP	m AC/FP	AC/FP	m AC/FP
CASMO5 2.03	ENDF/B-VII.1	1	-2/+3	+1/+2	-1/+1	+2/+1
CASMO5 2.13	ENDF/B-VII.1	2	-3/+1	+0/+1	-2/+0	+1/-0
CASMO5 2.12, 2.13	ENDF/B-VII.1	3,4	-2/+1	+0/+1	-2/+0	+1/+3
CASMO5 3.01, 3.02	ENDF/B-VII.1	5,11	-3/+1	+0/+1	-2/+0	+1/+3
CASMO5 3.01, 3.02	ENDF/B-VIII.0	$6,\!12$	-3/+1	-0/+0	-3/+0	,
CASMO5 3.01	JEFF-3.1.1	7	-10/+5	-4/+2	-6/+1	-2/+6
CASMO5 3.01, 3.02	JEFF-3.2	8,9	-3/+1	-1/+1	-4/+0	-0/+3
CASMO5 3.02	JENDL-4.0	10	-2/+2	+1/+2	-2/+1	+2/+4
SCALE [18]	SCALE-6		-1/+2			
WIMS [22]	JEFF-3.1		-1/+8		-4/-1	
VESTA [23]	ENDF/B-VII.0		-1/-2		-5/+13	
VESTA 23	ENDF/B-VII.1		+0/-4		-5/+11	
VESTA 23	ENDF/B-VIII.0		+0/-2		-5/+14	
VESTA 23	JEFF-3.1		-2/+0		-6/+13	
VESTA 23	JEFF-3.2		+0/+0		-6/+14	
VESTA 23	JEFF-3.3		+1/-1		-5/+14	
TRITON [8]	SCALE-5.1		,			+1/+6

Uncertainties due to nuclear data

- Sampling approach (TMC like): repeating 300 times the same calculations, each time with sampled nuclear data using
 - ENDF/B-VIII.0, JEFF-3.3 and JENDL-4.0 covariance files (separately for each library)
 - Partial variation for XS and FY

Fig. 5. Relative contributions of the cross sections (called XS) and fission yields (called FY) to the total uncertainties based on the ENDF/B-VIII.0 covariance library.

Uncertainties due to nuclear data

					ENDF/B-VIII.0	JEFF-3.3	JENDL-4.0
					GU3'	GU3	GU3'
	ENDF/B-VIII.0	JEFF-3.3	JENDL-4.0	⁹⁰ Sr	0.7	1.4	0.7
	GU3'	GU3'	GU3'	⁹⁵ Mo	0.9	0.7	0.9
				⁹⁹ Tc	1.4	0.8	1.6
924				106 Ru	2.8	0.9	3.1
234 U	2.3	2.2	7.9	103 Rh	1.0	1.7	1.0
^{235}U	1.2	1.6	1.8	¹⁰⁹ A σ	21	4.4	20
$^{236}\mathrm{U}$	0.8	1.7	1.2	^{125}Sb	18	27	30
23811	0.0	0.0	0.0	^{129}I	3.0	6.1	3.5
237 Np	2.2	2.0	4.0	^{133}Cs	28	2.3	30
238D	0.0	0.4	4.0	^{134}Cs	29	4.6	30
200 Pu	4.8	9.4	7.0	^{135}Cs	7.1	20	7.6
²³⁹ Pu	1.8	1.7	2.2	^{137}Cs	6.7	3.6	6.9
240 Pu	4.3	2.5	4.4	¹⁴⁴ Ce 147D	0.4	0.6	0.5
241 Pu	3.2	3.1	3.4	142 N.d	2.5 5.1	1.2	1.3
$242P_{11}$	4.8	8.5	8.6	143Nd	2.0	3.6	0.8
244 Du	8.0	8 1	0.2	^{144}Nd	1.2	2.2	0.4
241 A	0.9	0.1	9.2	^{145}Nd	2.0	0.9	0.4
241 Am	3.4	3.1	3.9	$^{146}\mathrm{Nd}$	1.7	0.7	0.3
^{242m}Am	3.8	3.2	4.5	148 Nd	0.4	0.6	0.4
^{243}Am	8.5	7.7	9.0	¹⁵⁰ Nd	0.4	0.9	0.5
^{242}Cm	3.6	2.7	4.1	¹⁴⁷ Sm	2.2	1.2	1.2
243Cm	11	16	19	¹⁴⁰ Sm	1.8	1.9	1.0
244 Cm	0.7	10	10	149 Sm 150 Gm	1.7	3.5	1.6
245 G	9.7	9.3	10	151 Sm	1.2	1.3	1.0
²⁴⁵ Cm	15	14	15	152Sm	2.1	3.8	2.0
^{246}Cm	24	21	24	^{154}Sm	1.6	7.3	1.7
				^{153}Eu	3.3	2.1	1.1
				$^{154}\mathrm{Eu}$	2.8	2.3	1.3
				$^{155}\mathrm{Eu}$	24	24	1.1
				155 Gd	23	23	1.1

(IQNet)

Uncertainties due to other quantities

- Operating conditions:
 - Fuel & moderator temperatures, boron concentration (uniform, 2 %)
 - Burnup (uniform, 0.25%, certainly underestimated, given recent results)
- Manufacturing tolerances:
 - Radii of the fuel and guide tubes, positions, pitch (uniform, 0.5%, with constrains)
 - Fuel density and enrichment (uniform, 0.5%)

	ND	TFU	TMO	BOR	RAD	ENR	(X-Y)	DEP	PITCH
	$\min{-\max}$					+ DEN			
$^{234}\mathrm{U}$	2.3 - 7.9	0.0	0.3	0.0	0.1	0.1	0.2	0.2	0.5
$^{235}\mathrm{U}$	1.2 - 1.8	0.2	1.8	0.0	0.6	0.6	1.0	0.4	1.1
$^{236}\mathrm{U}$	$0.8 {-} 1.7$	0.0	0.3	0.0	0.0	0.2	0.1	0.1	0.1
$^{238}\mathrm{U}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
^{237}Np	3.3 - 4.0	0.1	0.9	0.0	0.2	0.3	0.2	0.2	1.1
238 Pu	4.8 - 9.4	0.0	1.8	0.0	0.2	0.4	0.4	0.4	2.0
239 Pu	1.7 - 2.2	0.2	1.6	0.0	0.2	0.1	0.4	0.0	1.6
240 Pu	2.5 - 4.4	0.1	1.0	0.0	0.1	0.1	0.2	0.1	0.6
241 Pu	3.1 - 3.4	0.2	1.8	0.0	0.2	0.3	0.2	0.1	1.5
242 Pu	4.8 - 8.6	0.1	1.0	0.0	0.5	0.7	0.6	0.4	0.9
244 Pu	8.1 - 9.2	0.1	1.8	0.0	0.7	0.9	1.1	0.7	1.9
$^{241}\mathrm{Am}$	3.1 - 3.9	0.2	1.8	0.0	0.2	0.3	0.3	0.1	2.7
^{242m}Am	3.2 - 4.5	0.3	3.2	0.1	0.4	0.3	0.7	0.2	3.6
$^{243}\mathrm{Am}$	7.7 - 9.0	0.1	1.3	0.0	0.6	0.7	0.7	0.5	1.7
^{242}Cm	2.7 - 4.1	0.1	1.8	0.0	0.3	0.5	0.2	0.3	1.6
$^{243}\mathrm{Cm}$	11 - 16	0.1	2.6	0.1	0.3	0.6	0.3	0.5	2.7
^{244}Cm	9.3 - 10	0.1	2.4	0.1	0.6	0.9	1.0	0.8	3.1
$^{245}\mathrm{Cm}$	14 - 15	0.1	4.9	0.1	0.5	0.9	1.1	0.9	4.8
$^{246}\mathrm{Cm}$	21 - 24	0.1	2.9	0.1	0.9	1.2	1.6	1.2	4.1

Comparison biases and uncertainties

Table B.6.estimated uncertaintieson isotopic concentrations for GU3', taking into accountthe calculation bias and the experimental and calculated uncertainties. ΔC_{max} come from the nuclear data libraryleading to the highest nuclear data uncertainty (either ENDF/B-VIII.0, JEFF-3.3 or JENDL-4.0).

	Bias	ΔE	$\Delta \mathrm{C}_{\mathrm{max}}$
	(%)	(%)	(%)
^{234}U	+44	2.5	7.9
^{236}U	+0.7	0.4	1.7
²³⁷ Np	-14	3.8	4.2
²³⁹ Pu	-0.3	0.3	3.2
²⁴¹ Pu	-3.1	0.3	4.2
244 Pu	-73	25	9.7
^{242m}Am	+8.5	5.5	6.6
^{242}Cm	-6.1	3.6	1.6
244 Cm	-11	1.8	11
^{246}Cm	-20	5.2	25
⁹⁰ Sr	+5.4	8.0	1.4
99 Tc	-8.5	8.9	1.7
106 Ru	-3.6	14	1.9
¹⁰⁹ Ag	-35	9.1	20.9
¹²⁹ I	-17	5.6	6.1
^{134}Cs	-1.6	1.5	30
^{137}Cs	+1.7	2.4	6.9
142 Nd	+0.5	5.0	5.3
144 Nd	-0.4	0.3	2.4
146 Nd	-0.5	0.3	1.9
150 Nd	-0.1	0.3	1.2
$^{147}\mathrm{Sm}$	+9.2	0.3	2.4
^{149}Sm	+9.6	1.0	4.5
^{151}Sm	+0.1	0.4	12
^{154}Sm	+10	0.3	7.4
$^{154}\mathrm{Eu}$	+6.0	1.9	3.7
155 Gd	-14	1.1	24

- GU3 is relatively challenging due to its relocation
- GU3' seems more trusted than GU3
- Nuclear data libraries affect the C/Es
- Nuclear data uncertainties are different based on different libraries
- The effect of fission yields is not negligible (which sampling method for the SG10 follow-up?)
- Other sources of uncertainties can be as large as the ones from nuclear data
- Not all biases can be explained by calculated uncertainties: necessity to consider many samples in validation studies.
- Same methods applied to
 - GU3: <u>https://www.epj-n.org/articles/epjn/pdf/2021/01/epjn210012.pdf</u>.
 - GU1: <u>https://www.sciencedirect.com/science/article/pii/S0306454921002358</u>.
 - U1: <u>https://www.sciencedirect.com/science/article/pii/S0306454920304047</u>.
 - BM1 & BM3: <u>https://www.epj-n.org/articles/epjn/abs/2021/01/epjn210030/epjn210030.html</u>.
 - ENRESA: <u>https://www.epj-n.org/articles/epjn/abs/2022/01/epjn220015/epjn220015.html</u>.

Wir schaffen Wissen – heute für morgen

