PAUL SCHERRER INSTITUT

D. Rochman, on behalf of SG12

A brief overview of the OECD NEA WPNCS SG12: Decay heat from existing Spent Nuclear Fuel

ISO/TC 85/SC 6/WG 1 Meeting, May 3th, 2023, online

- Decay heat Needs
- Subgroup
- Achievements

• Decay heat linked to "source terms", dose, criticality, safety, economy

- Precise knowledge on SNF decay heat is required for
 - Core transients (short cooling time),

CLEFS CEA - Nº 45 - AUTOMNE 2001-

- Same questions as in the EURAD WP8 and the IAEA CRP projects
 - How well can we characterize SNF (nuclides, decay heat)?
 - What are the (industrial) needs?
 - Source of uncertainties (modelling, 2D, core simulator...)
 - How much do we trust calculated burnup, core power...
 - How blind are we?
 - New measurements, which ones ?

Fig. 2. Histogram of the ratios of calculated (C) over experimental (E) decay heat values from literature studies for calorimetric measurements. Both PWR and BWR assemblies are included.

- Precise knowledge on SNF decay heat is required for
 - Core transients (short cooling time),
 - Safe and economical storage, transport and long-term repository (long cooling time)

A simple average of the values presented in this figure leads to an average of 1.002 ± 0.015

- Precise knowledge on SNF decay heat is required for
 - Core transients (short cooling time),
 - Safe and economical storage, transport and long-term repository (long cooling time)

Fig. 8. Relative difference between measured (E) and calculated (C) decay heat rate values for the five different assemblies studied.

A simple average of the values presented in the previous figure leads to an average of 1.002 ± 0.015

C

-cask

What are the needs for SNF decay heat?

- Best estimate plus uncertainties (BEPU): •
 - Last cycle before shutdown
 - 1.0Which curve is -canister better and Decay heat (kW) 0.8 why? 0.30.6 2.53.0 0.40.2 $\mathbf{2}$ 3 4 5 Cooling time (years) 1 % difference in decay heat \Rightarrow 1 % difference in canister number
 - (1 canister ≈ 0.5-1 M€)

What are the needs ?

- Poor overlap between measured SNF decay heat and existing SNF in cask
 - -Only 1 device worldwide
 - Current SNF characteristics do not overlap with the measured ones:
 - high enrichment (up to HALEU),
 - high burnup (> 60 MWd/kgU),
 - long cooling,
 - high decay heat
 - ATF, VVER, MOX, CANDU

What are the needs ?

- Poor overlap between measured SNF decay heat and existing SNF in cask
 - -Only 1 device worldwide
 - Current SNF characteristics do not overlap with the measured ones:
 - high enrichment (up to HALEU),
 - high burnup (> 60 MWd/kgU),
 - long cooling,
 - high decay heat
 - ATF, VVER, MOX, CANDU

General goals for the WPNCS SG12

 <u>SG12</u>: Decay heat from existing Spent Nuclear Fuel, ≈60 participants, 2 years, started in 2022.

General goals for the WPNCS SG12

- <u>SG12</u>: Decay heat from existing Spent Nuclear Fuel, ≈60 participants, 2 years, started in 2022.
- Long-term goal: provide the user community with reliable estimations of decay heat for spent nuclear fuel from existing power plants, including best estimates, as well as uncertainties (or covariances) for specific cooling times, relevant for severe accident to long-term repository
- Goal 1: Gather the international community
- Goal 2: Raise awareness for new measurements, burnup estimation and evaluations (standards)
- Goal 3: State-of-the art report, codes
- Goal 4: define a new (not blind) benchmark

http://www.psi.ch/stars

- Online WPNCS meeting (short update), January 28, 2022, official start of the SG12
- 1st meeting (online), March 15, 2022
 - Define the structure of the report, assign persons/sections
 - Discuss, collect ideas for a new DH computational benchmark
- Online meeting, April 1st, 2022
 - Update/debrief on the previous meeting (for participants unable to previously join)
- Online meeting, May 18, 2022
 - Defining a proposal for a DH benchmark, to be presented at the next meeting
- 2nd meeting (hybrid), June 27, 2022 (see next slides).
- 3rd meeting (online), December 1st.
 DH benchmark proposal
- 4th meeting (hybrid), June 28, 2023.

Current outcomes for the WPNCS SG12

- Draft report schedule for June 2023
- Code for DH standards: available in the SG
- Benchmark definition being finalized
- Linked with EURAD, EURAD-II, IAEA CRP, EPRI-SKB program, national programs
- Future: SMR, GEN-III, IV

Main outcome of the 2nd meeting

- 62 participants, 21 in person
- 7 technical presentations, 2 overview presentations (1 RWMC, 1 WPNCS)

- Discussion on the SG12 report
- Decision on future computational benchmark
- Letter of support for the KKG calorimeter, interest in a joint project
- Need of new measurements

Example: H. Akkurt - presentation (EPRI, USA)

- PIRT Report
- EPRI-SKB collaboration
- Extended Storage Collaboration Program

Extending Validation Range for Decay Heat							
	Clab-1*	Clab-2**	Clab-3***				
Measurement interval	2003-2004	2005-2010	2017-2021	Recent measurement			
Number of Measurements	109	95	51	campaign (2017-2021),			
Enrichment range (%)	2.1-3.4	2.1-3.7	2.1-4.1	significantly extended decay			
Burnup range (GWd/MTU)	15-51	20-50	20-55	heat validation ranges for			
Cooling time range (Years)	11-27	11-27	1.5-35	cooling time and decay heat			
Decay heat range (W)	57-712	91-850	71-1724				
*Published in SKB Report R-05-62 in **Some validation results publisher articles) without full specifications ***Not yet published	n 2006 d (journal <u>S</u> 100	Clab Measuremen	nts				
Uncertainty analysis is still ongoing but preliminary and indicate that measurement uncertainty is less than 1% high decay heat	alysis						
		0 250 5	00 750 100 Measured Decay H	0 1250 1500 1750 leat (W)			

 A code for calculating SNF decay heat with standard methods is available in the SG12

SSP-22/446 Rev 0		STDSNF, SNF Standards for DH
		Studsvik
		SSP-22/446 Rev 0
		17 October 2022
ç	STDSNF cod	e Input
	Standard	c input
	Standard	15
	for Decay Heat	Power
		Distribution of her Tax
	Telement	Simeonov
Prepared by:	In formant of	-04'00'

STDSNF, SNF Standards for DH			SSP-22/446 Rev 0
CC	NTE	NTS	
1	SUN	IMARY	1
2	BAS	IC KEYWORDS	2
3	CON	AMON INPUTS	3
1	SPE	CIFIC INPUTS	5
	4.1	ANSI/ANS-5.1 (2014)	5
	4.2	DIN 25463, 02-2014	б
	4.3	RG 3.54 Rev2	8
	4.4	ISO 10645, 2022	8
;	EXA	MPLES	9
	5.1	ANSI/ANS-5.1, 2014	10
	5.2	DIN 25463 1/2, 2014, UOX	11
	5.3	DIN 25463 1/2, 2014, MOX	12
	5.4	U.S. NRC RG 3.54 Rev.2, 2018	13
	5.5	ISO 10645, 2022	14
	5.6	U.S. NRC RG 3.54 Rev.2, 2018. Nodal	15

Example: T. Simeonov - presentation (Studsvik, USA)

• A code for calculating SNF decay heat with standard methods is available in the SG12

			BWR + PWR		BWR		PW	R
Code or method	version	library	Average	1σ	Average	1σ	Average	1σ
CASMO5	2.03	ENDF/B-VII.1 (201)	1.006	0.043	1.008	0.052	1.001	0.018
CASMO5	2.13	ENDF/B-VII.1 (201)	0.989	0.041	0.991	0.050	0.982	0.016
CASMO5	2.13	ENDF/B-VII.1 (202)	0.988	0.041	0.991	0.050	0.982	0.017
CASMO5	3.05	ENDF/B-VII.1 (202)	0.987	0.041	0.991	0.050	0.982	0.017
CASMO5	3.05	ENDF/B-VIII.0 (300)	0.986	0.041	0.990	0.051	0.980	0.017
CASMO5	3.05	JEFF-3.2 (202)	0.981	0.042	0.986	0.051	0.973	0.016
CASMO5	3.05	JEFF-3.1.1 (200)	0.975	0.042	0.979	0.051	0.968	0.016
CASMO5	3.05	JEF-2.2 (300)	0.982	0.042	0.988	0.051	0.975	0.016
SNF	1.6	ENDF/B-VII.1 (201)	1.003	0.048	1.004	0.057	1.002	0.027
SNF	1.07	ENDF/B-VII.1 (202)	0.987	0.046	0.989	0.053	0.984	0.030
ANS	2014		1.119	0.071	1.124	0.080	1.111	0.054
ISO	2022		1.121	0.088	1.141	0.088	1.090	0.078
RG-3.54	2018		1.087	0.041	1.095	0.073	1.076	0.040
DIN	2014		1.015	0.037	-	-	1.015	0.037

Table 3. Summary of the C/E averages and standard deviations for the SNF decay heat values as presented in Table 1.

Table 1. Summary of the experiments considered in this study. Original information can be found in Refs. [15,20–25], The abbreviations W14, W15, W17, GE7, GE8, GE9, S64 and S100 correspond to the following designs: Westinghouse 14x14, 15x15, 17x17, General Electric 7x7, 8x8, 9x9, SVEA-64 and SVEA-100, respectively.

Facility	Reactor	Reactor	SFA	Measured	Enrichment 23511	Burnup	Cooling	Nbr	Nbr
	type		design	(W)	(wt%)	(MWd/kgU)	(years)	SFA	wieas.
Clab	PWR	Ringhals-3	W17	661-1662	3.60-3.95	50-55	4.5-21	5	5
Clab	BWR	Ringhals-1	GE8	88-211	2.3-2.9	21-45	13-24	17	44
Clab	PWR	Ringhals-2	W15	357-692	3.1-3.3	34-51	16-27	18	33
Clab	PWR	Ringhals-3	W17	210-714	2.1-3.4	20-47	13-26	16	38
Clab	BWR	Barsebäck-1,2	GE8	83-240	2.3-3.2	20-41	11-25	7	9
Clab	BWR	Oskarshamn-2,3	GE8	56-283	2.2-2.9	15-47	12-27	14	14
			S64, S100						
Clab	BWR	Forsmark-1,2,3	GE8, GE9 S64, S100	85-218	2.1-3.0	20-38	11-15	11	13
GE-Morris	BWR	Cooper	GE7	62-392	1.1-2.5	12-28	2-7	54	80
GE-Morris	PWR	Point Beach-2	W14	724-934	3.4	32-39	4	6	6
GE-Morris	PWR	San Onofre-1	W14	359-934	3.9-4.0	27-32	3-8	8	8
EMAD	PWR	Turkey Point	W15	625-1423	2.6	26-28	2-6	4	6
Total	PWR			210-1662	2.1-4.0	20-55	2-27	57	96
	BWR			56-392	1.1-3.2	12-47	2-27	103	160

Fig. 5. Histograms for the C/E ratios using four standard methods.

- Main goal of the SG12: SOTA report (available on Overleaf)
- To be finalized in June 2023

EPJ manuscript No. (vill be inserted by the editor)	vi D. Rochman: An introduction to Spent Nuclear Fuel decay heat for Light Water Reactors	D. Rochman: An introduction to Spent Nuclear Fuel decay heat for Light Water Reactors vii
(will be inserted by the editor) (will be insereditor) (will be inserted by the editor) (will be inserted	D. Rocellans: An introduction to Spent Nuclear Fuel decay hast for Light Nater Reactors Contents Ø Recovered TODO O.1.1 Acknowledgements ODO O.1.2 List of Authors O.1.1 Controls O.1.1 Controls O.1.1 Acknowledgements O.1.2 List of Authors Controls D. Todewise List of Authors Controls Controls D.1.1 Acknowledgements O.1.2 Controls D.1.2 Controls Controls D.1.2 Controls	D. Rochmain: An introduction to Spent Nuclear Pair decay near for Light Water Rescues vi 6.6.5 Effect of humable absorber 6.6.6 Articular of construction materials
 ¹⁰ Genellichaft für Anlagen- und Reaktorsicherleit (GIS) gCmML, Germany ¹¹ KIT- Karline Genomenschaft für die Lagering radioaktiver Abfalle, Switzerland ¹² Nagra Nationale Genomenschaft für die Lagering radioaktiver Abfalle, Switzerland ¹³ Nagra Nationale Genomenschaft für die Lagering radioaktiver Abfalle, Switzerland ¹³ Nagra Nationale Genomenschaft für die Lagering radioaktiver Abfalle, Switzerland ¹³ Pagna Atomic Zhenry Agency, Japan ¹⁴ Thirtheit and Research Centra of Finkel Atcl., Finland ¹⁵ VTT Tieshnäl Geneseric Centra of Biologi Atcl., Finland ¹⁶ DTO 2000 (Entoneux, France ¹⁶ EDP, OLIPNO, TL, Joon, Fance Andhow Japase and Biologi, will be removed before publication ²⁸ * copyright ferm receised. For admins propsess on Bioli, Will be inserted later Abstract. not applicable for NEA publications 	3.5.3 Measured burnup 11 4 Ploying back, by contributors 13 4.2 Delayed fastion 13 4.3 Activation products 14 4.4 Plasing products 17 4.5 Activation products 12 7 A factivation products 12 8 Activation products 12 9 Measurements 22 6 1.2 Detaymetic measurements 25 5.1.1 General information 27 5.2 Option and measurements 23 5.2.2 Detay of measurements 24 5.2.2 Detay of measurements 24 5.2.2 Detay of measurements 24 5.2.2 Detay of measurements 36 6 Calculation methods 36 6.1 Simple formula 36	Appendit 98 A. Details on decay heat formula. 98 A.1. Bont-Wheeler function, circa 1946 98 A.2. Distances with function, 1952. 98 A.3. Distances function, 1953. 99 A.4. Elsevise function, 1953. 99 A.5. Elsevise function, 1951. 99 A.6. Glasstone function, 1951. 99 A.7. Distance function, 1951. 99 A.6. Glasstone function, 1951. 99 A.7. Distance function, 1951. 99 A.6. Glasstone function, 1951. 99 A.7. Distance function, 1951. 99 D.7. Toderase-Kannin function, 1950. 99 D.7. Distance function function, 1950. 100 D. Copyright forms 108
PACS. XX.XXX No PACS code given	6.3 Standarda 99 6.3.1 Oraverise 39 6.3.2 DIN 25463-1 and -2 standarda, 2014 41 6.3.3 US NUC 40.3.43, version 41, 2014 44 6.4.3 UN 25465-1 and -2 standarda, 2014 44 6.4.4 US NUC 40.3.44, version 41, 2014 44 6.3.7 Example of application 55 6.4 Summation methods 57 6.4.1 Summation methods 57 6.4.3 Mainton methods 56 6.4.4 Mainton methods 57 6.4.5 Mainton methods 56 6.4.6 Mainton methods 56 6.4.8 Mainton for data 61 6.4.4 Mainton for data 62 6.5 Source of more staintime, [P. Pethod] 66 6.6.4 Mainton target bases 63 6.5.4 Mainton for data 64 6.6.5 Annel for the pethod point bases 69 6.6.4 Nuclear reactions 69	

DH future benchmark

PAUL SCHERRER INSTITUT

Decay heat computational benchmark: definition for a PWR UO₂ assembly and pincell

WPNCS SG12

D. Rochman¹

¹Reactor Physics and Thermal hydraulic Laboratory, PSI, Switzerland

Version 0.1

February 9st, 2023

Page 4 (12)

2 BENCHMARK DESCRIPTION

In the following, both cases of the pincell and assembly will be described. For geometric and fuel descriptions, the pincell is directly extracted from the assembly case. All original information can be found in Ref.[1] and specific references (pages, tables) are also provided in the following.

2.1 Description of assembly 0E2

The description of the OE2 assembly and its irradiation history are presented in Tables 1 to 3. References to publications are included. When an information provided in the tables does not originate from a specific reference, a note is added. The assembly average burnup is 41.6 MWd/kgU, and the initial enrichment in U-235 is 3.1 %. The assembly can be described using a quarter symmetry, as presented in Fig. 1 using CASMOS and SCALE plots. For the 2D simulation, no modelling for the spacers is required, and no specific material at the top and bottom of the assembly needs to be modelled.

Table 1: General information for

General	information	for assembly	0E2 – part 1.

Generic data		Reference
Reactor type	Westinghouse 3 loop PWR	
Reactor name	Ringhals 3	[1], page 15/253, table 3-2
Reactor coolant system pressure	155 bar	[1], page 226/253
Number of assembly in core	157	[1], page 226/253
Centrum distance between fuel assemblies	21.50 cm	[1], page 226/253
Active length	3658 mm	[1], page 227/253
Average temperature into core at full power	600 K	See note 1
Average temperature in pellets at full power	900 K	See note 1
Coolant density	0.72 g/cm ³	[3], page 84/180
Reactor Power	2775 MW	[1], page 226/253, see note 4

Decay heat computational benchmark: definition from the WPNCS SG12

Future DH computational benchmark

- 2D simulations: assembly and pincell
- CLAB-2006 measurement: PWR 17x17 assembly 0E2, 3.1 %, 41.6 MWd/kgU
- Multiple measurements
- PAUL SCHERRER INSTITUT Required input/output
- Input details provided by the SG12
- Irradiation steps and cooling steps for the pincell and assembly
- Code, important methods, libraries
- Calculated DH + standard DH values
- Calculated neutron/gamma emission, activity
- k_{inf} during irradiation
- Nuclide concentrations during irradiation + cooling tim
 - -U-234,235,236,238, Pu238-242, Am241-243, Cm242-
 - U-234,235,236,238, Pu238-242, Am241-243, Cm242-- Nd146-148, Rh103,106, Cs133,134,137, Ba137m, Sr9 fission rates (separate between 4 main actinides) Delayed fission
- fission rates (separate between 4 main actinides)
- Delayed fission
- Sensitivity ?
- Gaps ?

- Decay heat for existing SNF is still a subject where improvements are needed (computational and experimental)
 - Belief of "high precision" prediction, not systematically backed up by facts
 - Scarcity of integral experiments
- Linked to criticality, dose, optimization (safety and economy)
- Validation gaps still exist: high burnup, high enrichment, short & long cooling time, MOX
- SG12:
 - gather specialists/non specialists,
 - State of current knowledge,
 - Raise awareness,
 - Prepare "evaluation" of decay heat

Wir schaffen Wissen – heute für morgen

