



D. Rochman

Discussion for a decay heat benchmark description (updated slides)



# Summary

- General observations
- Feedback
- Proposal for input and output
- Discussion (updated on 18/05/2022)
- Summary/wrap up (updated after the meeting 19/05/2022)





### General observations

- Goal: compare calculated decay heat (DH) for a simple benchmark with understanding
  - Known inputs (code, library, method, constants)
  - Simple geometry & irradiation
- Define outputs: DH, nuclide concentrations, energy releases, fission rates,



## Feedback from V. Vallet (CEA)

- 1. Pincell UO<sub>2</sub> 3.7% enriched 235U, with different burnup steps
- 2. Same for a MOX pincell
- 2D simulation, reflective boundaries
- 4. Calculate both UO<sub>2</sub> and MOX case, or only one
- 5. Fast calculations -> Eventually repeat for different enrichments/burnup





### Feedback from S. Sato (CRIEPI)

### 1. Step 1: Detailed comparisons of data used in each depletion code

(ex.) direct and cumulative fission yield, recoverable energy by fission (MeV/fission, including its definition), decay energy (alpha, beta, gamma), decay constant, etc.

#### 2. Step 2: Depletion calculation in a simple geometry and condition

(ex.) 2-D pin cell geometry, constant linear power density, constant void fraction (if BWR) or constant boron concentration (if PWR), etc.

### 3. Step 3: Detailed comparisons of calculation results

(ex.) decay heat (alpha, beta, gamma), nuclide inventory, number of fissions of each fissile, etc. at 10, 20, 30, 40, 50, 60 GWd/t -> 0, 1, 2, 3, 5, 10, 15, 20 years cooling.

I Net

p://www.psi.ch/stars 2022.05.20/STARS/RD41 - ( 5 / 18)



# Feedback from J.F. Martin (OECD)

- 1. Shall we consider a case close to an assembly with measured DH?
- 2. WPRS benchmark from 2006

https://www.researchgate.net/publication/237631432 International comparison of a depletion calculation benchmark devoted to fuel cycle issues

Results from the Phase 1 dedicated to PWR-UOx fuels

(Takahama PWR case)

PHYSOR-2006, ANS Topical Meeting on Reactor Physics Organized and hosted by the Canadian Nuclear Society. Vancouver, BC, Canada. 2006 September 10-14

# International comparison of a depletion calculation benchmark devoted to fuel cycle issues Results from the Phase 1 dedicated to PWR-UOx fuels

B. Roque<sup>\*1</sup>, R. Gregg<sup>2</sup>, R. Kilger<sup>3</sup>, F. Laugier<sup>4</sup>, P. Marimbeau<sup>1</sup>, A. Ranta-Aho<sup>5</sup>, C. Riffard<sup>1</sup>, K. Suyama<sup>6</sup>, J.F. Thro<sup>7</sup>, M. Yudkevich<sup>8</sup>, K. Hesketh<sup>2</sup>, E. Sartori<sup>9</sup>

INET STORY

# Feedback from J.F. Martin (OECD)

### 5.3 Results of code to code comparison for calculated decay heat

Table 2 shows that a good agreement is obtained for the total decay heat calculation. However, because of the lack of measurement for this quantity, a conclusion about how accurate the calculation is cannot be drawn.

**Table 2**: RSD results for assembly and cell calculations of decay heat

|                      | Discharge | 5 years | 50 years | 100 years | 300 years |
|----------------------|-----------|---------|----------|-----------|-----------|
| Assembly calculation | 3%        | 2%      | 1%       | 2%        | 2%        |
| Cell calculation     | 3%        | 1%      | 1%       | 3%        | 5%        |



# Feedback from A. Launey (ORANO)

- Shall we consider complete fuel?
- Compensation...





- Example from SERPENT: <a href="http://serpent.vtt.fi/mediawiki/index.php/Tutorial">http://serpent.vtt.fi/mediawiki/index.php/Tutorial</a>
  - 2D PWR pin-cell, infinite lattice, UO<sub>2</sub>, 3%wt

```
% --- Simple 2D PWR pin-cell geometry for Serpent tutorial
 * Material definitions *
% --- Fuel material (3.0 wt-% enriched uranium dioxide), density 10.1 g/cm3
92235.03c -0.02644492
92238.03c -0.85505247
% --- Cladding material for fuel rod
mat clad -6.55
40000.03c -1.0
% --- Water at 1.0 g/cm3
% Defined using atomic fractions for the composition.
% Hydrogen is flagged as a bound scatterer with the "moder"-card
mat water -1.0 moder MyThermLib 1001
 1001.03c
8016.03c
% --- Define thermal scattering libraries associated with hydrogen in light water
therm MyThermLib lwj3.00t
* Geometry definitions *
% --- Fuel pin structure
pin p1
fuel 0.4025
      0.4750
% --- Square surface with 1.5 cm side centered at (x,y) = (0,0)
surf s1 sac 0.0 0.0 0.75
% --- Cell c1 belongs to the base universe 0, is filled with the pin p1
% and covers everything inside surface s1
% --- Cell c2 belongs to the base universe 0, is defined as an "outside" cell
% and covers everything outside surface s1
/***************
% --- Neutron population: 5000 neutrons per cycle, 100 active / 20 inactive cycles
% --- Boundary condition (1 = black, 2 = reflective, 3 = periodic)
```



http://www.psi.ch/stars 2022.05.20/STARS/RD41 - ( 9 / 18)

# PAUL SCHERRER INSTITUT

### Output quantities

- Energy releases
  - Q values for fission (U5, U8, Pu9, Pu1)
  - Energy distribution (E<sub>kin</sub>, gamma prompt, decay...)
- Specific burnup points
  - $-k_{inf}$
  - Fission rates/initial fissile atoms (total and contributions from U5, U8, Pu9, Pu1)
  - Nuclide concentrations
  - **...**
- Cooling time fixed: 0, 10, ...
  - Decay heat
  - Nuclide concentrations
  - Neutron/gamma emission
  - Delayed fission rates





The following slides were written during the meeting





# Discussion (notes during the discussions)

- Define inputs and outputs
- Run in parallel pincell and assembly (2D)
- Select an assembly with measurement. Define the input quantities for all
- Use a SKB-2006 case (PWR, BWR)
- Recommend to release the MERCI measured data? (Oystein to ask, edf/cea/??) + draft a letter from SG12
- Was the MERCI pincell critical? Complexity of the modeling
- PWR easier case ? 47 MWd/kgU, 17x17, 3.4 %
- Sent a table to fill "a cross" for pincell, PWR or BWR cases

//www.psi.ch/stars — 2022.05.20/STARS/RD41 - ( 12 / 18



# Discussion (notes during the discussions)

- Outputs
- Kinf, nuclide concentrations, fission rates (separate between 4 main actinides)
- DH, neutron/gamma, activities (contributions from different isotopes)
- Make a list of isotopes (+provide top 20 for DH by different codes with %, as a function of cooling time)
- Delayed fission
- Time scale
- Sensitivity analysis

- Define specific inputs
- Libraries, codes, decay data,...
- Existing gaps ? Nuclear data ?





The following slides were written after the meeting





# Discussion (notes after the discussion)

Brief summary from the discussion part, using the notes from J.F. Martin and D. Rochman

### • 34 Participants:

| A. Algora   | F. Alvarez Velarde | O. Buss            | O. Bremnes       | O. Cabellos      | S. Caruso     |
|-------------|--------------------|--------------------|------------------|------------------|---------------|
| R. Dagan    | D. Foligno         | F. Fernandez Lopez | L. Giot          | F. Gomez Salcedo | K. Govers     |
| S. Hakkinen | V. Hannstein       | A. Hoefer          | G. Ilas          | P. Juutilainen   | S. Lahaye     |
| V. Leger    | J.F. Martin        | A. Koning          | M. Kromar        | A. Launey        | L. McManniman |
| D. Rochman  | S. Sato            | M. Seidl           | P. Schillebeeckx | A. Shama         | T. Simeonov   |
| A. Sjoland  | S. Tittlebach      | A. Tsilanizara     | E. Vlassopoulos  |                  |               |





# Discussion (notes after the discussion)

### Relevant remarks/discussion chronologically ordered:

- K. Govers: supported the idea to start with a pincell
- J.F. Martin: pincell, possibly followed by a real case assembly
- A. Sjoland: supported the idea of a pincell too
- L. Giot: Remark on the previous work from B. Roque (Takahama sample): not really suited for our benchmark
- · G. Ilas:
  - notes importance of calculating assemblies since this is what being stored and that's the application case
  - Calculate cell pins, ok, they're different, but the conclusions are still the same in the end
  - Importance to calculate fuel assemblies as a whole!
- A. Launay:
  - Agrees with G. Ilas
  - also notes compensation effects that may contribute to the calculation. Hence the importance to calculate full assemblies
- O. Bremnes:
  - recommends to study a simple situation
  - Code validation focused. Simplest possible approach. Although final aim is to understand decay heat of assemblies. Recommend to start with pin cell and then move towards more complete modelling
- S. Hakkinen: Start with pin cell to start simple and in the future move to 3d effects esp. for VVER (BWR?) void fraction effects vs elevation
- M. Seidl:
  - need to take into account the calculations based on "standards" (e.g. DIN)
  - Suggest to start with a simple case, and move to a more complex one





# Discussion (notes after the discussion)

- A. Sjoland:
  - notes that calorimetry was performed at pellet level.
  - Timeline for this exercise would help to define the strategy
  - whether we go bottom up (pellet / cell / assembly), if we have enough resources for this
  - Also, what do we expect to learn in terms of transposition / representativity between cell and assembly
- M. Kromar:
  - Pincell is useful, but not representative,
  - avoid 3D (too complex for now)
  - Compare codes/libraries/methods for a particular problem
- O. Cabellos: proposed to provide a nuclide inventory, and to perform decay calculations (no depletion)
- F. Alvarez Velarde: Agrees with Oscar, and recall the importance of nuclear data and uncertainty propagation
- J.F. Martin:
  - Link with WPNCS SG10 for ND & inventory calculations including after cooling time.
  - Enhance cross collaboration between both groups. Coordinators not able to join today.
- A. Koning
  - Output of the group to provide the needs in terms of nuclear data and their uncertainties
  - Uncertainty: simple approach is to switch from one library to the other



The following recommendations were supported by the group:

- 1. Perform in parallel 2D calculations for an assembly and one of its pincell
- 2. Select a PWR assembly from the SKB 2006 campaign for comparison with measured decay heat
- 3. Provide to participants all relevant geometry/irradiation information (*e.g.* irradiation steps, cooling steps)
- 4. Ask participants the "maximum" information about their simulations: inputs (e.g. libraries, energy releases...)
- 5. Provide the following output
  - K<sub>inf</sub>, nuclide concentrations, fission rates (separate between 4 main actinides)
  - Decay heat, neutron/gamma, activities (contributions from different isotopes)
  - Make a list of isotopes (+provide top 20 for DH by different codes with %, as a function of cooling time)
  - Delayed fission
  - Possibly sensitivity analysis
- 6. Assessing gaps, for instance in nuclear data
- 7. Provide a letter of interest from the SG12 for the availability of the MERCI experiment





# Wir schaffen Wissen – heute für morgen

