

Reporting on the 1st meeting of SG16 on

"Computational Spent Nuclear Fuel decay heat: the PWR 0E2 case"

D. Rochman

WPNCS Meeting, September 27th, 2024, OECD-NEA, Boulogne Billancourt, France

Report on the 1st SG16 meeting

- Feedback from SG12
 - On assessing our current knowledge regarding decay heat for current SNF
 - From January 2022 to December 2023
 - Gather actors from different horizons and exchange of knowledge
 - Find a consensus, presented in
 - Publication at the ICNC 2023 conference
 - Accepted review paper in EPJ/N

- Follow-up activity: this SG16, on "Computational Spent Nuclear Fuel decay heat: the PWR 0E2 case"
- Goals:

•	Defining a decay heat benchmark (done)	!
---	-----------------------------------	-------	---

• Perform required calculations (to be submitted 31/12/2024)

• Analyze results (2025)

Report/publish results and discussions (2025)

Possibly extend the benchmark with new measurements & analysis (2025)

SG16 decay heat benchmark

• Specifications: sent by email on August 29

NEA/NSC/WPNCS/WD(2024)1/REV1

For Official Use

English text only

31 July 2024

NUCLEAR ENERGY AGENCY
NUCLEAR SCIENCE COMMITTEE

Working Party on Nuclear Criticality Safety (WPNCS)

Decay heat computational comparison exercise: definition for a PWR UO2 assembly and pincell

Specifications for the exercise of WPNCS SG16

Revision of June 25th, 2024: in table 4, He gap density was corrected to 1.3e-3 g/cm3 (in lieu of 1.3e-4 g/cm3)

PAUL SCHERRER INSTITUT

Decay heat computational benchmark: definition for a PWR UO₂ assembly and pincell

WPNCS SG16

D. Rochman

Reactor Physics and Thermal hydraulic Laboratory, PSI, Switzerland

SG16 decay heat benchmark

- Specifications: sent by email on August 29
- Benchmark description in the document
 - Pincell
 - Assembly
 - 6 measurements

10 | NEA/NSC/WPNCS/WD(2024)1/REV1

Decay heat measurements for assembly 0E2

A total of 6 measurements was performed for assembly 0E2. The first one is mentioned in Ref. [1], and the 5 later ones in Ref. [2]. They are listed in Table 4, with the cooling time relative to the shutdown date for cycle C5: July 7, 1988.

Table 5: Decay heat measurements for assembly 0E2.

Reference	Uncertainty (in W,	Total decay heat	Gamma escape	Measurement	Cooling time
	1σ)	(W)	(W)	date	(days)
[1], pages 19,34/253, [2], Table A.2	7.0	587.9	15.5	16/06/2004	5823
[2], Table A.2	6.9	566.0		03/01/2006	6389
[2], Table A.2	6.9	567.7		04/01/2006	6390
[2], Table A.2	6.6	522.4		10/12/2009	7826
[2], Table A.2	6.6	525.6		21/12/2009	7837
[2], Table A.2	6.6	520.1		03/05/2010	7970

NEA/NSC/WPNCS/WD(2024)1/REV

or Official Use

English text only

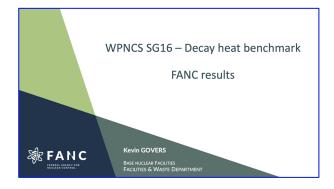
NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE

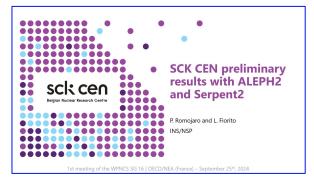
Working Party on Nuclear Criticality Safety (WPNCS)

Decay heat computational comparison exercise: definition for a PWR UO2 assembly and nincell

Specifications for the exercise of WPNCS SG16

Revision of June 25th, 2024: in table 4, He gap density was corrected to 1.3e-3 g/cm3 (in lieu of 1.3e-4 g/cm3)

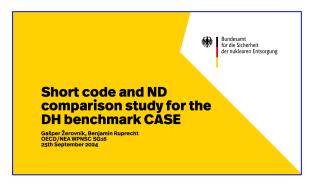

SG16 decay heat benchmark

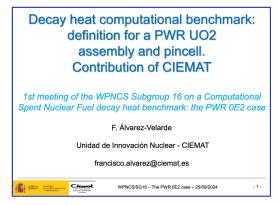


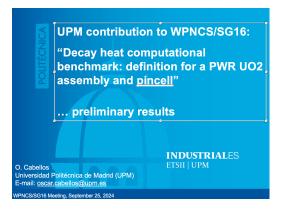
- Required output: fill an Excel table about
 - Calculated decay heat at the measured times
 - Decay heat contributors
 - Neutron and gamma emission at the measured times (possibly with 7 groups gamma spectrum)
 - Number densities (during irradiation and at measured times)
 - k_∞
 - Fission rates
 - Possibly input files after the submission of results
- Excel document distributed and available on the SG16 webpage
- At the date of the 1st meeting:
 - Results received from 5 institutes
 - Some institutes provided different scenarios (nuclear data, codes, options)
 - In total:
 - 15 calculations for the pincell and
 - 8 calculations for the assembly

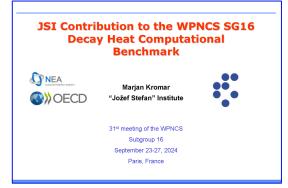
SG16 Presentations

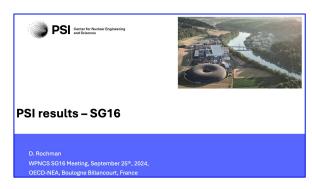












SG16 Presentations: main points

- All required quantities (preliminary) presented
 - Decay heat, number densities, kinf,
 - Different nuclear data libraries
 - Different codes
 - Different modelling assumptions
- Additional quantities
 - Sensitivities
 - Uncertainties (from fission yields)
- Main comments
 - Pincell model: overestimation of the decay heat
 - Necessity to analyse differences
 - Discussion on relevance of C/E=1

• Some preliminary results at EOL ($\Delta = 1$ standard deviation)

,	•	,
	pincell	assembly
 Δk_∞: 	≈ 1800 <u>pcm</u>	≈ 2700 <u>pcm</u>
• Δ ²³⁵ U:	≈ 4 %	≈2 %
• Δ ²³⁹ Pu:	≈3%	≈2%
 Δneutron emission: 	≈3%	≈9%
 Δgamma emission: 	≈ 29 %	≈ 38 %

• Average pincell C/E decay heat: 1.023 ± 0.048

Average assembly C/E decay heat: 0.982 ± 0.056

Many thanks

• Questions?

