

Multifaceted coded nuclear data libraries assemblage: TENDL-2023

Arjan Koning, Dimitri Rochman and <u>J.-Ch. Sublet</u> Dr. Eng. IAEA Unit Head

The making of TENDL-2023 – repeatability and innovation

- 7 incident particles: alpha, gamma, deuteron, proton, helium, triton and neutron induced libraries
- 2813 targets Z=1-115, Hydrogen to Moscovium, including as target some 513 m (1st), 30 n (2nd) isomeric states (T¹/₂ > 1s)
- TENDL describes all open reaction channels, product yields, emitted spectra, and short-lived daughter radionuclides (T¹/₂ > 0.1s) up to 200 MeV, with covariance derived from reference input parameters variation
- 12th version

Nuclear landscape: Isotopic targets

- -neutron
- -gamma
- -proton
- -deuteron -triton
- -alpha
- -helion

Nuclear landscape: Isotopic residuals & decays

• Radioactive decay data: 4035 "reaction daughters" or "residuals"

Portal https://tendl.web.psi.ch/tendl_2023/tendl2023.html

is a point)

- Tabular forms
- ENDF-6: explicit s30 and implicit s0
- GNDS explicit
- Variance-Covariance from model parameters
- Plots, films

TALYS-based evaluated nuclear data library

Last update: January 03, 2023

We believe that our great How to reference goal can be achieved with Sub-library files systematism and reproducibility. We are so 1. Neutron outside the box, that the box 2. Proton 3. Deuteron (updated) 7. Gamma 8. Fission yields 9. Thermal scattering 10. For astrophysics Application libraries & tar files (ENDF, GND, ACE, PENDF...) V&V

Total Monte Carlo files

3. Random ENDF-6 files from other libraries

4. Triton 5. He3 6. Alpha

TALYS 1.96 https://tendl.web.psi.ch/tendl_2021/talys.html

TALYS time steps evolution

TALYS around the World

• Around 5500 citations (web of sciences)

AFA

TALYS applications in the World

• Around 5500 citations (web of sciences)

2,392 Physics Nuclear	960 Physics Particles Fields	543 Physics Multidisciplinary	461 Radiology Nu Medicine Med	ıclear dical Imaging
1,847 Nuclear Science Technology	720 Astronomy Astrophysics	427 Instruments Instrumentation		239 Chemistry Analytical
	636 Chemistry Inorganic Nuclear	321 Physics Atomic Molecular Chemical		

T6: automatisation – reproducibility - robustness

• TALYS, TANES, TARES, TAFIS, TEFAL, TASMAN

T3: automatisation – reproducibility – robustness - simplification

• TALYS, TEFAL, TASMAN: version 2.0

T3: TALYS, TEFAL, TASMAM + resbase

• RESONANCETABLES ready to use resonance parameters

https://www-nds.iaea.org/talys/

7500 experiments, age weighted, subjective, but..

T3: TALYS, TEFAL, TASMAN + resbase

- Distribution: Github <u>https://github.com/arjankoning1/tefal</u>
- TEFAL

Also aiming for

- TALYS
- TASMAN

TALYS coded input parameters & GOF

35

30

section [mb] 50

s 15

0

5

10

15

Incident Neutron Energy [MeV]

20

ŏ 10

- Optimized parameters
- Weight allocation on explosion

	Reaction	Nuclides						
	(n,γ)	278	wtable					
p.	(n,f)	34	vfiscor	betafiscor	ctable(1)	ptable(1)	ctable(2)	ptable(2)
	(n,n';2n;p)	210	rv(p)	g _{ph} (0)	g _{ph} (n)	ctable(n)	ctable(p)	
-	(n,α)	157	r ν(α)	$Cstrip(\alpha)$	g _{ph} (0)	$ctable(\alpha)$		
» 9 - 9 -	(p,n)	142	rv(p)	rwd(p)	rv(n)	g _{ph} (0)	g _{ph} (n)	ctable(n)
	(γ,n)	77	wtable	ftable	etable			
⊕ ⊕	(α,n)	93	rv(α)	rwd(α)	rv(n)	g _{ph} (0)	ctable(α)	
5	(d,n)	40	rv(p)	rwd(p)	rv(n)	gph(0)	g _{ph} (n)	ctable(n)

45

50

TALYS coded input parameters & GOF

 Outlier assignment (W0) and optimised TALYS model parameters per nuclide and reaction channel

Scouting the nuclear lanscapes

Let International Atomic Energy Agency Atoms for Peace and Development

TALYS default, optimized MF1 parameters

- to xs, 0.0253 eV
- to MACS, 30 Kev
- to Maxw., SPA
- to xs, < 1 MeV
- to angles

TENDL-2023 ASTRO

- 8892 isotopes for astrophysics applications: cross sections, reaction rates and MACS
- Different reaction "model sets" were used: "a model set" represents a combination of up to 9 TALYS models, not all are compatible:
 - 1. Gamma strength function (values 8 or 9): either Gogny D1M HFB+QRPA, or SMLO
 - 2. Level density (values 1, 2 or 5): Constant temperature + Fermi gas model, or Back-shifted Fermi gas model, or Microscopic level densities (Skyrme force) from Hilaire's combinatorial tables
 - 3. JLM microscopic optical model potential or KD optical model (values y or n)
 - 4. Gamma strength function for M1 (values 3 or 8): Hartree-Fock BCS tables or Gogny D1M HFB+QRPA
 - 5. Collective enhancement (values y or n): yes or no
 - 6. Width fluctuation (values 0, 1 or 2): Moldauer or Hofmann-Richert-Tepel-Weidenmueller model
 - 7. Mass model (values 0, 1, 2 or 3): Duflo-Zuker formula, Moeller table, Goriely HFB-Skyrme table, or HFB-Gogny D1M table (except for known masses, where the experimental value is used)
 - 8. Alpha optical model (values 5 or 6): Demetriou/Goriely, or Avrigeanu
 - 9. Fission model (values 1 or 5): "experimental" fission barriers, or WKB approximation for fission path model.

TENDL-2023 ASTRO https://tendl.web.psi.ch/tendl 2023/astro/astro.html

- Started August 10th, 2022 and still goin on...
- 200 cores, up to 480 model combinations (x2 for fissiles) x isotopes x 4 metrics

TENDL-astro 2023

Cross sections, reaction rates and MACS for astrophysics

	Recomm	chaca quantities			
Quantities with uncertainties					
	10 models	480 models (A< 210)	960 models (A≥210)		
1. cross sections:	<u>(n,g) (n,p) (n,a)</u>	<u>(n,g) (n,p) (n,a)</u>	<u>(n,g) (n,p) (n,a)</u>		
2. cross sections:	<u>(p,g) (p.n) (p.a)</u>	<u>(p,g) (p,n) (p,a)</u>	<u>(p,g) (p,n) (p,a)</u>		
3. cross sections:	<u>(a,g) (a,n) (a,p)</u>	<u>(a,g) (a,n) (a,p)</u>	<u>(a,g) (a,n) (a,p)</u>		
4. reaction rates:	<u>(n,g) (n,p) (n,a)</u>	<u>(n,g) (n,p) (n,a)</u>	<u>(n,g) (n,p) (n,a)</u>		
5. reaction rates:	<u>(p,g) (p,n) (p,a)</u>	<u>(p,g) (p,n) (p,a)</u>	<u>(p,g) (p,n) (p,a)</u>		
6. reaction rates:	<u>(a,g) (a,n) (a,p)</u>	<u>(a,g) (a,n) (a,p)</u>	<u>(a,g) (a,n) (a,p)</u>		
7. Normalization function:	<u>G(T)</u>	<u>G(T)</u>	<u>G(T)</u>		
8. Maxwellian Averaged (n,g):	MACS	MACS	MACS		

Personmended quantitie

TALYS: prompt fission observable and fission yields

 TALYS treats a fission fragment as an excited nucleus and applies the Hauser-Feshbach statistical decay to the fission fragment deexcitation (prompt decay) and loops over all fission fragments.

20

Prompt fission observable and fission yields

- GEF version 2021/1.1 was used -- details are explained in Ref.[1] and [2]. •
- GEF fission fragment database in TALYS is available for 737 nuclei with 20 excitation energies for each. •
- TALYS interpolates yield and excitation energy if the input energy is in between available energies. .

UPPSALA

Model updates

 New inelastic scattering model using the Engelbrecht-Weidenmuller Transformation (E-W T)

TENDL-2023 innovation

- Usage of an enhanced, complete, resonance parameter database
- Major update of the experimental differential and integral databases
- Covariances information on all seven incident particles
- Re-written, modernized codes
- Autotalys default parameters script enhancement, verification

\$autotalys -element Na -mass 24 -proj n -E30 -nocovar >& n-Na024.log

• 200 cores times 2 months, Swiss power @

PAUL SCHERRER INSTITUT

Application Portal

Processed through NJOY2016,CALENDF and PREPRO2023 in application libraries for:

- FISPACT-II & CINDER (Bateman solver)
- MCNP6®, TRIPOLI4®, SERPENT,

OpenMC, CASMO and FLUKA (Boltzmann transport solver)

SPECTRA-PKA (material sciences toolkit)

Reference & us Home Application libraries & tar Last update: 23 February 2022 The TENDL-2021 application libraries can be retrieved as tar (*.tgz,*.tar.bz2) files for each sub-library. To untar the files, use the command: tar -zxvf on Unix or OsX. For Window user, it is likely to download as a *.gz, so it may need to be renamed as *.tar.gz before properly extracting with Winzip or 7Zip. Applications files are proposed for all (2813 targets as all T1/2 > 1 s from Z=1-115 Hydrogen to Moscovium) or a selection of isotopes: 630 neutron targets as the union of all targets in JEFF-3.3, ENDF/B-VIII.0 and JENDL-4.0; and 283 for p.d.a.g-targets as all stable isotopes. 1. Neutron 2813 ENDF files (2.9 Gb) 630 s30 explicit checked Ace files (tendl21c.tar.bz2, 2.2 Gb) for MCNP6.2 Ace-Readme.tendl21c. 2813 s30 explicit gxs-1102 groupwise, probability tables and graphs files for FISPACT-II (tendl21data.tar.bz2, 2.1 Gb) for FISPACT-II Gxs-Readme.tendl21g. 630 HDF5 files (1.2 Gb) for OpenMC and Hdf5-Readme.tendl21c (special thanks to P. Romano from ANL). 630 GNDS/Xml files (1.1 Gb). 630 TRIPOLI T4XS files (1.8 Gb) and Readme (40 kb). 2. Proton 2812 ENDF files (1.9 Gb), special files "so" (1.1 Gb) and special files "s60" (4.4 Gb) and 2808 ACE files (2.2 Gb) for MCNP. Random ENDF files (7.3 Gb). 282 s30 explicit checked Ace files (tendl21h.tar.bz2, 405Mb) for MCNP6.2 Ace-Readme.tendl21h. 2808 pendf, gxs-162, verified FISPACT-II files (ptendl2021.tar.bz2, 630 Mb) 282 GNDS/Xml files (185 Mb).

Reactor physics lexical : background (dilution)

Applications forms

CP's V&V deuteron, alpha, gamma induced libraries

• 5.5 MeV alpha on UO₂

and Boron nitride

Do application need s30 for CP's ? s15 may seem more resoneable !

CP's V&V deuteron, alpha, gamma induced libraries

• Gamma on ²³²Th

• Caveat: KAIST did not tought to look for fission in MF=10 !!

European Physical Journal A publication

TALYS: Modeling of nuclear reactions

Arjan Koning^{1*}, Stephane Hilaire^{2,3} and Stephane Goriely⁴

^{1*}Nuclear Data Section, IAEA, Wagrammerstrasse 5, Vienna, 1400, Austria.
²DIF, CEA, CEA, Arpajon, F-91297, France.
³Université Paris-Saclay, CEA, LMCE, 91680, Bruyères-le-Châtel, France.
⁴Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Campus de la Plaine, CP-226, Brussels, 1050, Belgium.

*Corresponding author(s). E-mail(s): A.Koning@iaea.org; Contributing authors: Stephane.Hilaire@cea.fr; Stephane.Goriely@ulb.be;

Abstract

Purpose: TALYS is a software package for the simulation of nuclear reactions below 200 MeV. It is used worldwide for the analysis and prediction of nuclear reactions and is based on state-of-art nuclear structure and nuclear reaction models. **Methods:** A general overview of the implemented physics and capabilities of TALYS is given. The general nuclear reaction mechanisms described are the optical model, direct reactions, compound nucleus model, pre-equilibrium reactions and fission. The most important nuclear structure models are those for masses, discrete levels, level densities, photon strength functions and fission barriers. **Results:** A wide variety of nuclear reactions, astrophysics, high-energy charged particle reactions and other reactions. **Conclusion:** TALYS is a nuclear reaction software which aims to give a complete description of nuclear reaction observables, and to be an important link between fundamental nuclear physics and applications.

Keywords: TALYS, nuclear reaction, nuclear structure, cross section, optical model, compound nucleus, pre-equilibrium, level density, photon strength function, fission, astrophysics

MSC Classification: 25.40.-h , 24.10.Ht , 24.60.Dr , 24.10.Pa

Workshop: https://indico.ictp.it/event/10221

Search Search in Conferences:	Joint ICTP-IAEA Wor Reaction Data with t	rkshop o the TALY	on Simulation of Nuclear /S Code (smr 3887)	
Overview				
Programme	Starts 16 Oct 2023 Ends 20 Oct 2023	9	ICTP Giambiagi Lecture Hall (AGH)	
Speakers	Central European Time		Riva Massimiliano e Carlotta, Grignano	
Apply here			I - 34151 Trieste (Italy)	
Practical info				
Joint ICTP-IAEA Workshop on Simulation of Nuclear Reaction Data with the IAUS Code	The call for applications is open. P An ICTP-IAEA meeting	Please click or	<u>n 'Apply here' to submit your application.</u>	
14 - 27 Docket 2023 20 - 27 Part August Standard of the standard and the standard bands and another of the standard bands another of the standard bands and another of the standard bands and another of the standard bands and another of the standard bands another of the standard bands and another of the standard bands another of the standard bandard bands another of the standard bandard bands an	The purpose of the workshop is nuclear physicists, nuclear engir	s to provide neers, and o	training and information exchange for other users of nuclear data for nuclear	
Number Lead Lead <thlead< th=""> Lead Lead <t< td=""><td colspan="3">applications. The Workshop will revolve around TALYS, an open source code for the simulation of nuclear reactions.</td></t<></thlead<>	applications. The Workshop will revolve around TALYS, an open source code for the simulation of nuclear reactions.			
Execution of the second s	TALVE is a nuclear reaction program for the complete and accurate simulation of nuclear			

TALYS is a nuclear reaction program for the complete and accurate simulation of nuclear reactions up to energies of 200 MeV, through an optimal combination of reliable nuclear models, flexibility and user-friendliness. TALYS can be used for the analysis of basic nuclear reaction experiments or to generate nuclear data for applications. Currently, there are more than 6000 publications in which TALYS is used, for applications such as astrophysics, medical isotope production, fission and fusion energy applications, and many others. The success of TALYS to simulate cross section and other observables depends on a solid implementation of nuclear reaction and structure models, including the optical model, discrete levels, level densities, fission, photon strength functions.

Topics:

mittere :

Secretariat:

Screenshot

🖾 smr3887@ictp.it

- General principles of nuclear reaction and nuclear structure physics
- · Measurements of nuclear reaction data, the variety of experimental data and adjusting TALYS nuclear model parameters to obtain good fits to experiment
- Modern theoretical nuclear structure and reaction models, application of TALYS results in nuclear technology and basic nuclear science
- The capability to run TALYS sample cases from low to high energies with hands-on exercises
- · Analyses of cross sections, spectra, angular distributions, and fission yields
- Uncertainty quantification

Lecturers:

- S. GORIELY, Université Libre de Bruxelles, Belgium S. HILAIRE, CEA, DAM, DIF, France A. KONING, IAEA, Austria
- S. POMP, University Uppsala, Sweden
- D. ROCHMAN, PSI Villigen, Switzerland

Organizers Arjan KONING (IAEA, Austria), Local Organiser: Nadia Binggeli (ICTP)

Status

- The essential knowledge is not the TENDL libraries themselves, but rather the numerical databases, parameters and physic models, processes, codes, tools and know-how that go into the automated making of every evaluations of the seven libraries
- TENDL delivers for all nuclear landscapes, application agnostic

• This year (2023) is made off:

- physic models sampling (480 model combinations x 8892 targets for Astrophysics RR)
- automated experimental information cross-section shape-shifting parameters set
- extended, enhanced fission observables
- Engelbrecht-Weidenmüller transformation implementation
- updated neutron scattering lengths (TARES)
- application agnostic detailed (capture, inelastic) prompt gamma ray yields and multiplicity
- application driven ENDF-6 free physic forms out of TALYS
- Autotalys, TALYS, TEFAL, TASMAN GitHub distribution

• ...

ENDF, GNDS forms

- Evaluated forms are hybrid specimen assembled from
 - experimental information & R Matrix formalism
 - nuclear model & structure
 - nuclear model & structure & differential tweak
 - nuclear model & structure & differential tweak & integral adjustment
- Evaluated forms are just a commencement, although it is seen as an end by an entire community
- The laws of Physics allow many verification (not validation) processes to take place during the making, assemblage and processing of evaluated file

ENDF, GNDS forms processes

- Processing system convert ENDF, GNDS forms into forms useful for practical applications: fission, fusion, stockpile stewardship, criticality safety, radiation shielding, nuclear medicine procedures, earth, space exploration and more
- Processed nuclear data forms are numerous, rich, abundant, diverse. Some are observable, other not, all have a specific importance for at least one applications
- Processing enhances, enriches, deepens the evaluated nuclear data to forms useful for applications and well beyond crosssection or criticality studies only

Thank you for your attention

With the kind participation of: Stephane Goriely, Stephane Hilaire, Pascal Romain, Shin Okumura, Kazuki Fujio and more..

