Recommended quantities

Cross sections
  1. (n,g) (n,p), (n,a),
  2. (p,g) (p,n), (p,a),
  3. (a,g) (a,n), (a,p),

Reaction rates
  1. (n,g) (n,p), (n,a),
  2. (p,g) (p,n), (p,a),
  3. (a,g) (a,n), (a,p),

Normalized partition function G(T)

30 keV Laboratory Maxwellian Averaged (n,g) Cross Sections MACS


Description of TALYS models

Below are various links to 8892 isotopes for astrophysics applications (cross sections, reaction rates and MACS) based on TALYS calculations (version 1.96).

Different reaction "model sets" were used: "a model set" represents a combination of 9 TALYS models:

  1. Gamma strength function (values 8 or 9): either E1 photon strength function: Gogny D1M Hartree-Fock-Bogoluybov (HFB) plus QRPA [1], or SMLO
  2. Level density (values 1, 2 or 5): Constant temperature + Fermi gas model, or Back-shifted Fermi gas model, or Skyrme-Hartree-Fock-Bogoluybov plus combinatorial level densities [2]
  3. JLM microscopic optical model potential or KD henomenological Koning-Delaroche optical model potentia [3] (values y or n)
  4. Gamma strength function for M1 (values 3 or 8): Hartree-Fock BCS tables or Gogny D1M HFB+QRPA [4]
  5. Collective enhancement (values y or n): yes or no
  6. Width fluctuation (values 0, 1 or 2): Moldauer model, or Hofmann-Richert-Tepel-Weidenmueller model
  7. Mass model (values 0, 1, 2 or 3): Duflo-Zuker formula, Moeller table, Goriely HFB-Skyrme table (HFB-24), or HFB-Gogny D1M table (except for known masses, where the experimental value is used)
  8. Alpha optical model (values 5 or 6): Demetriou/Goriely, or Avrigeanu
  9. Fission model (values 1 or 5): "experimental" fission barriers, or Skyrme-HFB fission barriers [5].

Each of the set models is named with 9 values, such as "91n3n1261" (default TALYS model), or 85n8n1261. These values correspond to the ones in the TALYS manual.

Examples of input/output files


Cross sections from 0.01 eV to 20 MeV; Typical examples:

  1. (n,g), (n,p), (n,a) -- input, energy grid, output xs000000.tot, xs010000.tot and xs000001.tot.
  2. (p,g), (p,n), (p,a) -- input, energy grid, output xs000000.tot, xs100000.tot and xs000001.tot.
  3. (a,g), (a,n), (a,p) -- input, energy grid, output xs000000.tot, xs100000.tot and xs010000.tot.

Reaction rates for all temperatures taking into account the thermal population of the target; Typical examples:

  1. (n,g), (n,p), (n,a) -- input, energy grid, output astrorate.g, astrorate.p and astrorate.a.
  2. (p,g), (p,n), (p,a) -- input, energy grid, output astrorate.tot.
  3. (a,g), (a,n), (a,p) -- input, energy grid, output astrorate.tot.

Normalized partition function G(T); Typical examples:

  1. neutrons -- input, energy grid, output astrorate.tot.

30 keV MACS Laboratory (not stellar) Maxwellian Averaged (n,g) Cross Sections; Typical examples:

  1. neutrons -- input, output macs.g.



Quantities with uncertainties
    10 models 480 models 960 models
    (A< 210) (A≥210)
  1. cross sections:
  2. (n,g) (n,p) (n,a) (n,g) (n,p) (n,a) (n,g) (n,p) (n,a)
  3. cross sections:
  4. (p,g) (p,n) (p,a) (p,g) (p,n) (p,a) (p,g) (p,n) (p,a)
  5. cross sections:
  6. (a,g) (a,n) (a,p) (a,g) (a,n) (a,p) (a,g) (a,n) (a,p)
  7. reaction rates:
  8. (n,g) (n,p) (n,a) (n,g) (n,p) (n,a) (n,g) (n,p) (n,a)
  9. reaction rates:
  10. (p,g) (p,n) (p,a) (p,g) (p,n) (p,a) (p,g) (p,n) (p,a)
  11. reaction rates:
  12. (a,g) (a,n) (a,p) (a,g) (a,n) (a,p) (a,g) (a,n) (a,p)
  13. Normalization function:
  14. G(T) G(T) G(T)
  15. Maxwellian Averaged (n,g) :
  16. MACS MACS MACS

[1] S. Goriely, S. Hilaire, and S. Peru, The Gogny-HFB+QRPA dipole strength function and its application to radiative neutron capture cross section, EPJ Web Conf., vol. 178, p. 04001, 2018.

[2] S. Goriely, S. Hilaire, and A.J. Koning, Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method, Phys. Rev. C, vol. 78, p. 064307, Dec 2008.

[3] A. Koning and J. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV, Nuclear Physics A, vol. 713, no. 3, pp. 231-310, 2003.

[4] S. Goriely, S. Hilaire, S. Peru, and K. Sieja, Gogny-HFB+QRPA dipole strength function and its application to radiative nucleon capture cross section, Phys. Rev. C, vol. 98, p. 014327, Jul 2018.

[5] S. Goriely, S. Hilaire, A. Koning, M. Sin, and R. Capote, Towards a prediction of fission cross section on the basis of microscopic nuclear inputs, Phys. Rev. C, vol. 79, p. 024612, 2009